
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
October 28, 1998

3. REPORT TYPE AND DATES COVERED
Final Report 4/2/98 - 10/2/98

4. TITLE AND SUBTITLE

Portable Reusable Application Software
SBIR Phase I Final Technical Report

6. AUTHOR(S)

N. Carl Ecklund, Technical Director, MCCI

5. FUNDING NUMBERS

C N68335-98-C-0140
Item No. 0001AF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Management Communications and Control, Inc.
2000 North 14th Street
Suite 220
Arlington, VA 22201

(MCCI)

8. PERFORMING ORGANIZATION
REPORT NUMBER

MCCI-98-NAWC-002

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Charles Bohman, Government Technical Liaison
Naval Air Systems Command HQ - Code PMA-299
Bldg. 2272, Suite 156
47123 Buse Rd., Unit IPT
Patuxent River, MD 20670-1457

11. SUPPLEMENTARY NOTES

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

19981110 015
12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The need for application software portability and reusability has been increased by
the COTS revolution. Operating system and math library independence are essential to
portability strategies. However, in order to achieve the high throughput required by
real-time sensor processing systems, the executable must be optimized for the specific

target.
Management Communications and Control, Inc. (MCCI) has developed a methodology and a

toolset which provides translation of target independent applications to target specific
source code incorporating target optimized libraries. Application portability and
reusability is inherent in the methodology. An order of magnitude reduction in applica-
tion development time has been demonstrated. Life cycle costs should be reduced by at
least the same factor. The methodology supports low cost reuse of the AN/UYS-2 code base.
This report provides an overview of the methodology and the toolset. Porting of the
DICASS sonobuoy signal processing from an AN/UYS-2 implementation to an implementation
using the MCCI methodology and toolset is demonstrated.

14. SUBJECT TERMS Autocoding Toolset, AN/UYS-2 Code Reuse, Open API,
Sonar Signal Processing, Portable Software, Life Cycle Cost
Reduction, Processing Graph Method (PGM), COTS

15. NUMBER OF PAGES
209

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Portable Reusable Application Software for COTS Platforms
SBIR N98-030 Phase I

Program Progress Report - 0001AF

Contractor:
Management Communications and Control, Inc.

(MCCI)
2000 North 14th Street

Suite 220
Arlington, VA 22201

Contract Number: N68335-98-C-0140

Key Person: Christopher B. Robbins, President

Government Technical Liaison:
Naval Air Systems Command HQ

Attn: Mr. Charles Bohman - Code PMA-299
Bldg. 2272, Suite 156, 47123 Buse Rd., Unit IPT

Patuxent River, MD 20670-1457

DTIC QUALITY INSPECTED 4

Report Number: MCCI-98-NAWC-002

Portable Reusable Application Software
SBIR Phase I Final Technical Report

October 28, 1998

Prepared for:
Naval Air Systems Command

Code PMA-299
Patuxent River, MD 20670-1457

Prepared by:
Management Communications and Control Inc. (MCCI)

2000 North Fourteenth Street, Suite 220
Arlington, VA 22201

Under Contract Number:
C68335-98-C-0140

Approved for public release; distribution is unlimited.

Portable Reusable Application Software
SBIR Phase I Final Technical Report

Table of Contents

1. Introduction 1
2. Application Overview 3

2.1 Description of the Application 3
2.2 Domain Primitives 4
2.3 Control Programs 5

3. Autocoding Toolset 6
3.1 Overview 6
3.2 Autocoding Process 6

3.2.1 Partition Builder 8
3.2.2 MPID Generator (MPIDGen) 8
3.2.3 Application Generator 8
3.2.4 Static Run-Time System 9

3.3 Ancillary Support Tools 9
3.3.1 Command Program Graphical User Interface 9
3.3.2 Performance Simulator 9
3.3.3 Architecture Definition Tool 10
3.3.4 Graph Translation Tool (GrTT) 10
3.3.5 Virtual Design Machine (VDM) 10

4. Productivity 10
4.1 Benchmarking of the MCCI Autocoding Toolset 10
4.2 MIT Lincoln Laboratory's Software Cost Model 13

5. Portability and Reusability 14
5.1 Porting the Autocoding Toolset to New Target Platforms 14
5.2 Porting the Run-Time System to New Target Platforms 16
5.3 Reusable Domain Primitive Application Graphs 17
5.4 HOL Control Program Reuse 18

6. Reuse of Existing AN/UYS-2 Applications 18
6.1 AN/UYS-2 Command Programs 18
6.2 Converting AN/UYS-2 Graphs 19
6.3 AN/UYS-2 Chains 21

6.3.1 Creating the Graph from the Chain Description 21
6.3.2 Modifications Based on Application Specific Use 22
6.3.3 CHN_ASNP Example 22

6.4 DICASS Conversion 42
6.4.1 Graph and Subgraphs 43
6.4.2 Domain Primitives 45
6.4.3 Chains 46
6.4.4 Partitioning 46
6.4.5 Testing 63
6.4.6 Graph Value Sets 76
6.4.7 Status 77
6.4.8 Level of Effort 77

Management Communications & Control, Inc. i SBIR Phase I Final Technical Report
N68335-98-C-0140

6.4.9 Conclusions and Recommendations 78
7. ILS Strategy 79

7.1 Board Replacement ILS Strategy 79
7.2 Board and Vendor Migration 79
7.3 Incorporation of Performance Upgrades with Board Replacement 80

Appendix A. Description of Chain for CHN_ASNP
Appendix B. Generalized Mapping of Q003 Primitives to Domain Primitives
Appendix C. Mapping of Parameters Q003 Primitives to Domain Primitives
Appendix D. Partition Graphs - Iconic Format

Management Communications & Control, Inc. ii SBIR Phase I Final Technical Report
N68335-98-C-0140

List of Figures

Figure 1. Typical System 4
Figure 2. Primitive Library Organization 5
Figure 3. Diagram of the Autocoding Toolset 7
Figure 4. PGM Domain Primitive Application Graph for SAR Benchmark 11
Figure 5. Range and Azimuth Partition Graphs and the Equivalent Application Graph

for SAR Benchmark 12
Figure 6. Comparison of GrTT Ada Behavior Model and MPID Unit Test Output

Vectors 12
Figure 7. Cost and Schedule Comparison of Software Development Using RASSP

PGM Based HW/SW Codesign Methodology and Tools vs. Standard Practice 14
Figure 8. Primitive Library Organization Extended for VSIP 15
Figure 9. DICASS Graph 20
Figure 10. Partition P_CWSIN_4 47
Figure 11. Simulated EW Sensor Data 64
Figure 12. Detail of Simulated EW Sensor Data 64
Figure 13. Simulated NS Sensor Data 65
Figure 14. Simulated Omni Sensor Data 65
Figure 15. Modified DICASS Equivalent Application Graph 66
Figure 16. Data on Queue ZQ 67
Figure 17. Data on Queue NSMQ 67
Figure 18. Data on Queue OMMQ 68
Figure 19. Data on Queue SC1 69
Figure 20. Detail of Data on Queue SC1 69
Figure 21. Detail of Data on SC2 - Real, Imaginary, and Magnitude 70
Figure 22. Data on Queue CDCM 71
Figure 23. Data on Queue BRCC 71
Figure 24. Data on Queue BRCN 72
Figure 25. Data on Queue Nmean_FPSB 72
Figure 26. Data on Queue Nmean_NMWF 73
Figure 27. Data on Queue NmeanJJNWF 73
Figure 28. Data on Queue Cmean_NMWF 74
Figure 29. Data on Queue Audio_FLT 74
Figure 30. Data on Queue Waterfall_X10 75
Figure 31. Data on Queue Ascan_X2 75
Figure 32. Data on Queue Ascan_X6 76

Management Communications & Control, Inc. iii SBIR Phase I Final Technical Report
N68335-98-C-0140

Acronyms

AG - Application Generator
API - Application Program Interface
CGA - Channel Gain Adjust
CP - Command Program
CP GUI - Command Program Graphical User Interface
CPI - Command Program Interface
DPAG - Domain Primitive Application Graph
EAG - Equivalent Application Graph
GIP - Graph Instantiation Parameter
GrM - Graph Manager
GrTT - Graph Translation Tool
GSMP - Graph execution Simulation on Multiple Processors
GV - Graph Variable
IOP - Input/Output Procedure
MPID - Multiprocessor Primitive Interface Description
MPIDGen - MPID Generator
NEP - Node Execution Parameter
PB - Partition Builder
PGM - Processing Graph Method
PID - Primitive Interface Description
PIP - Primitive Interface Procedure
PLU - Primitive Library Unit
SAR - Synthetic Aperture Radar
SPGN - Signal Processing Graph Notation
SRTS - Static Run-Time System
TPM - Target Primitive Map

Management Communications & Control, Inc. iv SBIR Phase I Final Technical Report
N68335-98-C-0140

Portable Reusable Application Software

1. Introduction
As the U. S. Navy transitions to COTS based systems, the need for portable and
reusable application software becomes essential. The life cycle for COTS hardware,
typically five years or less, is significantly shorter than the twenty plus years of an
operational platform. Additionally, the development and maintenance costs related to
software continue to increase in times of decreased funding.

Portable application software requires that the application software be independent of
target processor and platform Operating Systems (OS) and that the coding of modules
is standardized, such as ensuring ANSI C compliance. Any libraries referenced by the
software must also be standardized and portable.

A variety of operating systems are available today for the target processors and
platforms; however, no standard OS has been widely adopted by hardware vendors.
POSIX seems to be current "standard" OS; however, POSIX is a "heavy" OS that
contains many features that lead to a large memory requirements just for the OS.
There are also real-time issues that have become the subject of debate. Because of
the large amount of memory required even for a minimal POSIX implementation and
the real-time issues, many vendors are reluctant (or refuse) to modify their OS to be
POSIX compliant.

The high throughput requirements of signal processing applications require optimized
libraries since most compilers generate code that executes slower by a factor normally
in the range of four to six (or ever slower) than hand optimized code. Hardware
vendors have through the years developed their own libraries of signal processing
primitives which they optimize for the target processors that they support. These
libraries, while similar in functionality, are not compatible. As a minimum, the calling
sequences for the same functionality from two different vendors differ in the order
parameters are referenced. Additionally, while the core functionality is the same,
frequently a primitive from one vendor contains functionality that must be implemented
by a sequence of two or more primitives from another vendor. As an example, an FFT
might contain provisions for reordering the output.

There are, of course, different definitions (or more accurately levels) of "portability."
True portability implies that the application can simply be recompiled for the new
target/platform. In the case of the large applications under consideration, this might
not be strictly true since the target/platforms are multiprocessor systems. As part of the
port to a new target/platform it is likely that either repartitioning and/or reassigning
sections of the application will be desired. Newer targets should have increased
processing power and therefore the application can be executed on fewer processors.
Since inter-processor communications (IPC) can lead to increased overhead, using
fewer processors should result in increased efficiency by reducing the amount of IPC.

Management Communications & Control, Inc. 1 SBIR Phase I Final Technical Report
N68335-98-C-0140

A less portable (or lower level of portability) implementation would have all Operating
System interfaces, including inter-processor communications, isolated to a few
modules. These modules would have to be modified for a port to a different OS.

An undesirable situation is to have OS and IPC mechanisms "sprinkled" throughout
the application. Such an implementation becomes a nightmare when attempting to
port to another target/platform.

When applications are ported to new targets/platforms, it is also likely that additional
processing functionality will be added to the system. This might be in the form of
modifications to some of the existing processing, or it might be the addition of new
completely independent processing. A methodology for developing highly portable
applications will permit both of these scenarios without extensive rework of the existing
application software.

Reusable software must be target independent. Several levels of reusability should
be included. At the highest level, applications should be easily incorporated into new
or different platforms. As an example, the well developed algorithms for processing
sonobuoys (DIFAR, DICASS, etc.) should be readily incorporated into platforms that
are being developed primarily for new capabilities, such as dipping sonars. At an
intermediate level, functionality that is commonly used in many applications, such as
octave filtering, should be reusable in new applications. At the lowest level, a target
independent specification of common processing blocks should be defined.

Portable, reusable application software should therefore have the following
characteristics:

Operating System independence (or as a minimum, OS interfaces isolated to a
few modules).

A methodology which permits a target independent specification of the
processing, but, transparent to the user, provides links to libraries of optimized target
specific processing functions.

A methodology which permits "easy" modification of the processing and does
not require extensive hand rework.

A methodology which permits additional independent processing to be added
to the application without extensive rework.

A methodology which permits repartitioning and/or reassigning sections of the
processing without extensive rework.

The capability to incorporate reusable "blocks" defined at the "application,"
"subroutine," and "library module" levels.

Management Communications & Control, Inc. 2 SBIR Phase I Final Technical Report
N68335-98-C-0140

Management Communications and Control, Inc. (MCCI) has developed a
methodology and a toolset for developing and maintaining application software that is
consistent with these characteristics, generating application software that is portable
and reusable.

This document will describe the MCCI Autocoding Toolset and the associated
portability and reuse methodology. Porting of applications which have been
developed for the AN/UYS-2 will be described in considerable detail.

2. Application Overview
The MCCI Autocoding Toolset has as its foundation the Processing Graph Method
(PGM). PGM is a Navy developed standard that can be used to specify signal
processing (as well as some other types) applications using a data flow methodology.
PGM implements the Karp and Miller data flow paradigm. This seminal work is the
theoretical foundation for virtually all data flow methodologies. PGM is by far the most
mature and critically evaluated of all data flow methods. Despite its close association
with the AN/UYS-2, PGM has been maintained as a target independent data flow
language and is well suited for specification of applications for COTS targets. PGM
has both an iconic and a notational form.

2.1 Description of the Application
An application is specified as one or more PGM graphs, one or more Input/Output
Procedures, and a Command Program. Each graph represents independent
processing. The nodes in the application graphs specify the processing that is to be
performed by that portion of the application. The nodes in the graph reference either a
Domain Primitive or a user defined primitive that has been entered into the Autocoding
Toolset as a "custom" Domain Primitive. Domain Primitives provide for target
independent specification of the application. Since the graph has been specified
using Domain Primitives, the graph has been termed the Domain Primitive Application
Graph (DPAG). This term is used to distinguish this type of graph from other types of
graphs that arise as part of the autocoding process. The MCCI Autocoding Toolset
translates the PGM graphs into 'C source code that incorporates calls to a vendor
supplied target specific library of optimized signal processing functions.

Input/Output Procedures provide a mechanism for connecting the graph(s) to data
sources and data sinks. For many target systems, the physical mechanism for this
connection is custom i/o boards. Consequently, the user must manually code the
Input/Output Procedures. A set of SRTS functions are provided which implement the
interface with graphs. The user must use these SRTS services as part of every I/O
Procedure.

The Command Program provides the mechanism for controlling the application. This
typically involves an interface with some external device that for many applications
includes an operator interface. Individual graphs may be started, stopped, and re-
initialized. The values of variables that the graph(s) is using during execution may be
viewed (read) or modified (written) by the Command Program. Data sources and sinks
may be attached to (linked) or detached from (unlinked) individual graphs. The user

Management Communications & Control, Inc. 3 SBIR Phase I Final Technical Report
N68335-98-C-0140

must construct the Command Program. A set of services is provided which
implements the interface to graphs and to Input/Output Procedures.

A typical system is shown in Figure 1. Sensor data is processed according to the
processing specified in the signal processing graphs. The results of the processing
are typically shown on a display. An operator views the display and based on what is
observed possibly modifies or otherwise controls the processing by sending
messages to the Command Program. The Command Program translates operator
commands into actions that configure and control the application. These actions are
sent to the Graph Manager which modifies the application to conform to the desired
processing.

Sensors

Input Procedures

Command
Program

-^ .b- / Graph /
/ Manager/

Graphs

Output Procedures

T Display

Figure 1. Typical System

The Autocoding Toolset includes Run-Time System components that provide services
for graph execution, node scheduling, external control, queue management, and data
transfer. Calls to these services are automatically inserted into the source code
generated by the Autocoding Toolset.

2.2 Domain Primitives
The PGM graphs reference elements from an MCCI defined Domain Primitive Library
as the primitives underlying the nodes of the graphs. The elements of the Domain
Primitive Library are target independent kernel signal processing functions and data
flow control specifications. Domain Primitives are intended to match the level of
abstraction at which domain engineers design processes. The Domain Primitives
provide support for all legitimate combinations of input and output data modes,
structures, and multiple execution patterns. Domain Primitive Application Graphs
(DPAGs) is the term used to identify PGM graphs utilizing Domain Primitives.
Applications defined using DPAGs may be automatically translated to source code for

Management Communications & Control, Inc. SBIR Phase Final Technical Report
N68335-98-C-0140

any supported COTS processors without modification of the DPAGs. Existing
AN/UYS-2 graphs utilizing Q003 primitives may be easily converted to DPAGs.
conversion process is defined in Section 6.2 Converting AN/UYS-2 Graphs.

This

As part of the Autocoding Toolset translation process, each Domain Primitive is
replaced by a sequence of one or more calls to elements of a vendor supplied library.
This library of functions has been optimized for the specific target processor. (If the
vendor does not provide an optimized library, a library of 'C routines may be
substituted.) The information required to translate the Domain Primitives to the
sequence of vendor library elements is contained in Target Primitive Maps (TPMs) as
shown in Figure 2. Primitive Library Organization. In order to port the Autocoding
Toolset to a new vendor or to a new library, TPMs must be implemented by MCCI.
Additionally, Primitive Library Units (PLUs) must be constructed for each vendor library
element that is referenced by the set of TPMs. The primary information contained in
PLUs is the execution time expression for each target processor type. This information
is used in application execution simulation.

TPMs for
Vendor 1 Math

Library

TPMs for
Vendor 2 Math

Library

TPMs for
Vendor 3 Math
 Library

PLUs for
Vendor 3 Math

Library

Figure 2. Primitive Library Organization

2.3 Control Programs
Command Programs are the control programs (written in a Higher Order Language or
HOL) which configure/reconfigure the application based on events or external
commands, typically generated by an operator. Command programs may be written in
either 'C or Ada or implemented as a graphical user interface (GUI). Calls to elements
of a Command Program Interface Library (which is provided as part of the Autocoding
Toolset) cause the Graph Manager component of the Run-Time System to invoke the
appropriate action. Command Programs are dependent upon both the application
and on the embedded host (particularly the host OS). The Command Program is
reusable for control of the application executing on target platforms from different
vendors, provided that the same host OS is used in the different systems.

Management Communications & Control, Inc. SBIR Phase I Final Technical Report
N68335-98-C-0140

3. Autocoding Toolset

3.1 Overview
The Autocoding Toolset developed by Management Communications and Control, Inc.
(MCCI) is designed for large, complex signal processing applications that execute on
multiprocessor platforms. Run-time support services are provided for reconfiguring
and/or otherwise controlling the application and for supporting the execution of the
application. The Autocoding Toolset starts from a target independent specification of
the application and translates to a target dependent implementation. The target
independent specification is easily ported to other targets by re-translating the
application.

The MCCI Autocoding Toolset is used to translate signal processing applications that
have been specified using the Processing Graph Method (PGM) into a set of 'C
language source code files that implement the signal processing functionality. The
source code produced contains calls to functionality provided by the MCCI developed
Static Run-Time System (SRTS). The SRTS implements graph management, graph
execution, and queue management services which provide run-time support.

A high level diagram showing the components and some of the input required by the
components of the Autocoding Toolset is shown in Figure 3. There are three tools that
implement the core of the autocoding process. These are the Partition Builder, the
MPID Generator (MPIDGen), and the Application Generator (AG). Also shown in the
figure is the Static Run-Time System (SRTS) which provides run-time support services
for graph execution and control and for queue (data) management. The SRTS is
provided as a set of libraries. Calls to functions in these libraries that are required for
graph execution are automatically generated as part of the autocoding process.

The Autocoding Toolset also contains a performance simulator, GSMP, which
provides estimates of resource usage during execution of the application on the target
hardware, a tool (Architecture Definition Tool) for generating a display of the hardware
for use with the simulator and for generating a representation of architecture specific
information for use by the core components of the Autocoding Toolset, and a tool (CP
GUI) for generating sequences of commands that the Command Program would
normally issue for use in testing applications.

3.2 Autocoding Process
The user partitions each application graph, determining which combination of nodes
and subgraphs of the graph are to be grouped into a single schedulable entity. A
partition will normally be a connected segment of a DPAG, but disjoint segments are
permitted. The user provides the partitioning information using one of two methods
which are described later. The user assigns each partition to a particular processor.
More than one partition of a graph may be assigned to a particular processor.
Partitions from different graphs may be assigned to a particular processor. The
application is then ready for autocoding.

Management Communications & Control, Inc. 6 SBIR Phase I Final Technical Report
N68335-98-C-0140

Target Independent

H
APPLICATION

Domain
Primitive
Graphs &

Referenced
Subgraphs

X
_c

Graph Value
Sets

(I/O Device
Dependent)

Input/
Output

Procedures

(Host OS
dependent)

Command
Program

Partitioning
Information

Assignment
Information

Target
Dependent

Architecture
Description

Target
Processor

Descriptions

Graphical
Architecture
Description

Platform
Description

Architecture
Tool

i 1
Partition
Builder

Partition
Graphs

IOP
Description

Equivalent
Application
Graph

Partition
GV Sets

A

Application
Description

MPIDGen

SIDs
MPIDs

Document-
ation

vlPID
nformation

1Ü
Application
Generator

Make Make
Files Files

my.
Node
Tasks

J!3!L
Compiler

a Log

GSMP
Performance
Simulation

Libs

SRTS Lib

El
Run-Time
Execution

Configuration
File

CP
GUI

Commands

Figure 3. Diagram of the Autocoding Toolset

Management Communications & Control, Inc. SBIR Phase I Final Technical Report
N68335-98-C-0140

3.2.1 Partition Builder
The Partition Builder processes the partitioning information to form the partitions. A
partition is a subset of the nodes of a DPAG that will become a single schedulable
entity on a target processor. A target processor may have more than one partition
assigned to it. A graph for each unique partition is generated by the Partition Builder.
These graphs are called Partition Graphs.

An Equivalent Application Graph (EAG) is formed by replacing each partition in the
DPAG with a single equivalent node that represents the partition. The primitive
underlying each node in an EAG implements a control flow version of the processing
for the partition represented by the node. The primitives are generated by the tool
called MPIDGen from the Partition Graphs. MPIDGen is used in the next step of the
autocoding process.

3.2.2 MPID Generator (MPIDGen)
Each partition graph is translated by MPIDGen into 'C source code statements that
implement a control flow version of the processing described by the partition graph.
The partition graph is parsed to ensure a valid, error free, executable and translatable
graph. Graph analysis translates the data flow graph to execution sequence(s)
implementing graph transient and cyclic behavior for each set of enumerated control
values. This analysis provides the specification for a control flow program
implementing the MPID. A memory map is generated mapping queue operations into
a set of fixed buffer addresses. The control flow version has been termed a MPID, an
acronym for Multiprocessor Primitive Interface Description. This control flow
implementation references primitives from a vendor library of signal processing
functions for a particular target processor type such as an Intel i860 or a more standard
DSP such as an Analog Devices 21060. Incorporating this type of library provides for
efficient execution of the processing as these libraries have been optimized by the
library vendor for the particular target processor. The source code generated by
MPIDGen also includes calls to services provided by the Static Run-Time System for
activities such as reading and writing queues.

A test utility executes the MPID as a single node application for unit testing on either a
single target processor or the development workstation. Comparison of the
processing results of the unit testing with corresponding results from an executable
behavior model validates the autocoded translation.

3.2.3 Application Generator
When all of the Partition Graphs have been translated into MPIDs, the Equivalent
Application Graphs (EAGs) for the entire application are translated by the Application
Generator (AG) tool into 'C source code and data structures that interface with the
graph executing Static Run-Time System (SRTS). The Application Generator
accesses the assignment information to assign each partition and therefore each
equivalent node of each EAG to an actual processor. A node task wrapper is
generated for each equivalent node (i.e., partition) that has been assigned to a

Management Communications & Control, Inc. 8 SBIR Phase I Final Technical Report
N68335-98-C-0140

processor. This node task wrapper instantiates and calls the MPID function which was
generated for the partition corresponding to the equivalent node.

In addition to a node task wrapper for each equivalent node, the Application Generator
creates at least one thread manager for each processor in the architecture that has at
least one partition assigned to it. Each thread manager maintains a list of equivalent
nodes which have been assigned to the corresponding processor. The number of
thread managers created for a processor is dependent upon which Operating System
is used. For the MCOS implementation, a thread manager is created for each
processor for each graph that has equivalent nodes assigned to that processor. At
run-time, it is the thread manager task that actually creates the equivalent nodes
associated with the graphs in the application.

The Application Generator also generates architecture specific files required by the
Operating System and/or target specific cross-compiler. In addition, the Application
Generator creates a file which specifies the application to the Graph Manager
component of the SRTS.

3.2.4 Static Run-Time System
The Static Run-Time System (SRTS) consists of a Graph Manager and a set of graph
execution support services. The Graph Manager provides the interface between the
Command Program and the rest of the application. All application configuration
messages from the Command Program are sent to the Graph Manager which
processes the messages and invokes the processing associated with the message.
The graph execution support services provide initialization functions, queue data
management services, node scheduling services, and services for communication with
the Graph Manager. Calls to the services are embedded into the source code
generated by the autocoding process.

3.3 Ancillary Support Tools

3.3.1 Command Program Graphical User Interface
The Command Program Graphical User Interface (CP GUI) provides the user with an
easy to use Command Program interface. The CP GUI can be used to control
complete applications or portions of the application without having to construct a
Command Program. Since the CP GUI implements all of the application control
functions of the Command Program using a menu interface, it can be especially useful
during the development and unit testing phase when the interface to the application
may be changing. With the CP GUI, the user can issue single commands or construct
sequences of commands as macros. The macros form the basis for generating either
components of the final Command Program or Command Program scripts which can
be interfaced to a custom GUI.

3.3.2 Performance Simulator
The performance simulator, GSMP, uses a model of the hardware, a model of the
Static Run-Time System, models of the partitions (generated by MPIDGen), and a

Management Communications & Control, Inc. 9 SBIR Phase I Final Technical Report
N68335-98-C-0140

description of the application (generated by Application Generator) to estimate the
resource usage encountered during the execution of the application on the target
platform. During simulation, resource usage is visible via a display. Many resource
usage problems are easy to detect by watching the simulation. A statistics report is
also generated. Control of the application for GSMP simulation is via the CP GUI, and
macros generated by the CP GUI for test purposes can be reused, or macros
developed for simulation can be reused during test. Additionally, GSMP can playback
logs created during execution of the application on the actual target hardware,
providing a high degree of visibility into application execution.

3.3.3 Architecture Definition Tool
The Architecture Definition Tool permits the user to define or modify target processor
types, define the target architecture in a format compatible with the Autocoding
Toolset, and define a graphical view of the target architecture for use with GSMP.

3.3.4 Graph Translation Tool (GrTT)
An executable Ada partition behavior model may be automatically generated for each
partition using GrTT. Behavior models will exhibit step-by-step execution behavior that
is identical to the autocoded partition with numerical processing results that may be
compared to corresponding queue contents in the executable architecture graph. Test
vectors for validation on the target architecture may be generated. GrTT test vectors
can be used to verify design requirements capture and to validate partition autocoded
programs.

3.3.5 Virtual Design Machine (VDM)
The UNIX based network target planned for SBIR N94-165 Phase III will serve as a
high capacity functional simulator as well as an operational target.

4. Productivity
Utilizing MCCI's Autocoding Toolset to develop applications enables users to realize
an order of magnitude reduction in software development cost and a four fold
decrease in development times. Code with run-time performance that is comparable
to hand generated code is produced. A refereed evaluation of the productivity
enhancement our tools provide was conducted by MIT Lincoln Laboratory as part of
the RASSP program.

4.1 Benchmarking of the MCCI Autocoding Toolset
The RASSP program demonstrated its goal of improving embedded signal processor
development productivity by a factor of four through benchmarking MCCI's Autocoding
Toolset. A Synthetic Aperture Radar (SAR) signal processing algorithm developed by
MIT Lincoln Laboratory was used for tool and methodology testing. The benchmark
was initially implemented using traditional methods to establish a productivity
baseline. Productivity enhancements realized with the Autocoding Toolset were
formally evaluated by Lincoln Laboratory and compared with the baseline. MCCI also

Management Communications & Control, Inc. 10 SBIR Phase I Final Technical Report
N68335-98-C-0140

used the benchmark algorithm to demonstrate performance of the GrTT behavior
modeling tool developed under the RASSP technology base effort.

The SAR benchmark software allocation was implemented with an alpha version of
the Autocoding Toolset.

Figure 4 shows the PGM DPAG. Figure 5 shows graphs of the range and azimuth
partitions and the equivalent application graph created by the Partition Builder. Each
unique MPID was autocoded and unit tested by comparing its results to test vectors
generated by the behavior model and algorithm simulation tools. Figure 6 shows a
comparison of behavior model (GrTT) output for the range partition graph and the
corresponding vector from the MPID unit test.

N_F_A

N_FFT

N_FFT_AZ

N_FFT_AZ

N_P_»Z

N_PJWN

N_R

PAD

P«

RCSMUL

VMUL

VMULAZ

SAR

The SAR benchmark processing
requirements were allocated to hardware
processing requirements and a software
architecture. The software allocation
included range and azimuth processing
separated by a corner turn. SAR images
were formed from 1K range returns of 2K
complex words each. The required frame
rate is one second, requiring support of 2
MHz complex word input and output rates. A
latency constraint of three seconds was also
required. Range processing transformed
each range return into a complex spectrum
sorting return by bearing dependent Doppler.
Corner turning transposed the range
processed data into bearing range
alignment. Azimuth processing convolved
the range returns for each bearing with a
Doppler/range compensation kernel. The
processing load was approximately 500
Mflops.

Figure 4. PGM Domain Primitive Application Graph for SAR Benchmark

Management Communications & Control, Inc. 11 SBIR Phase I Final Technical Report
N68335-98-C-0140

Figure 5. Range and Azimuth Partition Graphs and the Equivalent
Application Graph for SAR Benchmark

Partition graphs are autocoded into executable programs encapsulated in
nodes of the equivalent application graph. The equivalent application
graph is autocoded into the run-time image of the application.

MPID O_B1_0 (real) 4000 _ GrTT °-B1-° (real)

■■ ""Hfl ™

DiffO_B1_0(real)

TT JT—T a
,GrTT O_B1_0 (imag) oe

DiffO_B1_0(imag)

TT l_l 1 T

Figure 6. Comparison of GrTT Ada Behavior Model and MPID Unit Test
Output Vectors

Management Communications & Control, Inc. 12 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Processing performance was comparable to the hand generated baseline. Significant
productivity improvements were demonstrated. Table 1 lists the comparisons between
the handcoded baseline and the results of autocoding. Test results show comparable
computational performance between baseline and autocoded implementations and
significant productivity enhancements. A factor of ten was achieved in reducing
development time including the time spent iterating the design. The development time
recorded with the autocoding tools includes the tool use learning curve and the
several design iterations. Significant further productivity improvements are expected
with the commercial release version of the Autocoding Toolset.

Measured
Item

Hand-
Coded

Autocoded Comment

Lines of
Code

2361 3855 a. user must generate SPGN for Domain Primitive Graph
b. RTS not included, MYA port
c. IOP not included (500 LOC)

Perform-
ance

<7 sec/sec
7 i860 Nodes

6.85 sec/sec
8 i860 Nodes

a. 8 Nodes needed for memory
b. Measured loading supports 7 node partitioning

Memory 32M 85.5M
29.5M (6/96)

a. Autocoding tool limitation
b. Upgrade in beta version

Develop-
ment Time

8 MM 0.75 MM a. 10 X improvement
b. includes learning time - should improve in future releases

Test Time 2.5 MM 0.5 MM a. 5 X improvement

Table 1. Comparison of Autocoding with Handcoding

4.2 MIT Lincoln Laboratory's Software Cost Model
The reduction in cost and schedule impacts of the productivity improvements
demonstrated are illustrated in Figure 7. These charts have been excerpted from the
viewgraph presentation, "Modeling RASSP Benefits," of an independent study of
RASSP productivity improvements by Dr. James C. Anderson of MIT Lincoln
Laboratory. Time and cost data measured during RASSP benchmarking were
analyzed using COCOMO (Constructive Cost Model) and REVIC (Revised
Intermediate COCOMO) to develop the comparison of developing a large real-time
processing software system using RASSP HW/SW codesign methodology (PGM
based executable requirements and tools, virtual prototyping, and autocoding) with the
standard six phase development program. The cost model results are dramatic; a 3.5
reduction in schedule and 7.4 reduction in cost are predicted. If the sponsor provides
executable requirements in the form of reusable graphs, the model predicts a factor of
9.09 reduction in cost and a factor of 6.25 reduction in schedule. This latter case
typifies life cycle maintenance and p3| insertion of new processing technology in the
Autocoding Toolset.

Management Communications & Control, Inc. 13 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

30

20

Effort
%Std Practice

Standard Practice

s A.
3:SW 1
Rqmts|

r
20

Prelim'

SIii
l|jj Detailed

20 Effort
% Std Practice HW/SW Codesign, Tools, Methodology, Executable

Requirements, Virtual Prototype & Autocoding

Modeling RASSP Benefits
James C. Anderson
MIT Lincoln Laboratory
28 February 1997

v itr 100

Schedule
% Std Practice

Figure 7. Cost and Schedule Comparison of Software Development
Using RASSP PGM Based HW/SW Codesign Methodology and Tools vs.

Standard Practice

5. Portability and Reusability
Domain Primitive Application Graphs may be reused on any target platform that is
supported by the MCCI Autocoding Toolset. Reuse involves specification of the new
hardware architecture, possibly repartitioning of the application graphs for the new
target, and automated generation of the application. New hardware architectures may
be technology upgrades of a vendor's boards or designs using boards from a different
vendor. HOL command programs may be reused on new hosts for which target
platform OS support or interface exists. Reuse capability makes the graphical
application specifications and HOL control programs become the high value, reuse
software. Reuse will also minimize program dependence on any particular hardware
vendor. The existing base of AN/UYS-2 graphical applications may be readily added
to the reuse library after porting the graphs to be Domain Primitive Graphs, making
them usable on all supported hardware targets. Ease of reuse will radically reduce
software life cycle costs.

5.1 Porting the Autocoding Toolset to New Target Platforms
Porting of the Autocoding Toolset requires effort at several levels. First, the Target
Primitive Maps (discussed in Section 2.2 Domain Primitives) must be implemented
whenever a new vendor supplied library is to be incorporated into the Autocoding
Toolset. The API to a particular vendor's library is usually not dependent upon the
type of target processor since vendors are concerned with compatibility of legacy
code. However, the API is normally different. Second, execution time estimates for
elements of the vendor supplied library must be entered in PLUs (discussed in Section
2.2 Domain Primitives) in order to simulate applications. Execution time estimates are
dependent upon target processor type (e.g., PowerPC, SHARC, etc.). Finally, the

Management Communications & Control, Inc. 14 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Static Run-Time System (SRTS) must be modified to use elements of the target
platform multiprocessor Operating System. Mechanisms for messaging, semaphoring,
shared memory constructs, and data transfers are dependent upon the facilities of the
OS. The changes required for the SRTS are isolated to a low level, comparable to
device drivers.

MCCI has been following the ARPA sponsored VSIP program. VSIP is developing a
specification for a library of vector, signal processing, and imaging functions that in
many respects parallels the Domain Primitive Library. VSIP is also implementing a
reference version of the library and performance versions of a subset of the library. It
is a goal of VSIP to have vendors implement versions of VSIP that have been
optimized for their target processors and platforms.

Incorporating the VSIP library, including the vendor optimized target specific versions,
into the Autocoding Toolset can be achieved using an organization shown in Figure 8.
The Domain Primitive Library would then support, without any modifications, any target
processor that had a VSIP compliant library. Some effort would be required to
incorporate the execution time expressions necessary for performance simulation. If
timing expressions were provided, this effort would be on the order of one week.

Under a separate program, MCCI has been investigating the impact of incorporating
VSIP into the Autocoding Toolset and the impact VSIP would have on execution
efficiency. The VSIP API uses an object oriented approach with data being
represented as views as opposed to the standard 'C' approach of memory locations.
The object oriented approach does add overhead, in both increased execution time
and increased memory usage. The overhead is dependent upon the application;
however, it is also based on the particular VSIP implementation being used.
Preliminary measurements indicate that the overhead should be tolerable for most
systems.

TPMsfor
Vendor 1 Math

Library

TPMs for
Vend or 2 Math

Lbrarv

TPMs for
VSIP Math
 Library 1

1

/

VSP Library ■

\

\

VSIP U Math
Library

Vendor 1 VSIP
Compliant Library

Vend or 2 VSP
Compliant Library

Figure 8. Primitive Library Organization Extended for VSIP

Management Communications & Control, Inc. 15 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

The importance of having target specific optimized libraries cannot be overstated. It is
these modules that provide the core of high throughput. Most current compilers do
well to provide executables that are three to four times slower than the optimized
library elements. This is deemed unacceptable, since it translates into three or four
times more hardware with the associated increases in cost, weight, power, space, and
maintenance, and the decreased reliability.

5.2 Porting the Run-Time System to New Target Platforms
The MCCI graph executing Static Run-Time System (SRTS) implements a Graph
Manager, which interfaces to the Command program for external control of the
application, and a set of services which provides for queue and data management and
for determination of when a node is ready for execution. The SRTS implements a
standardized Application Program Interface (API) and calls to the services are
embedded into the application specific source code generated by the Autocoding
Toolset. The SRTS services interface with the underlying Operating System for task
scheduling, Inter-Process Communication, and other operations normally associated
with OS services.

In order to understand the MCCI Operating System requirements, one must first
understand the hardware model. In the "normal" hardware configuration, there is an
embedded host processor and one or more groups of "signal processors." (It is
possible to configure the system such that a host is not required.) Each Group of
"signal processors" can consist of one or more processor boards typically consisting of
16 or more processors. An application consists of one or more signal processing
graphs, I/O Procedures, and a Command Program. A graph resides entirely within a
Group. Data from a graph can be piped to another graph. The graph receiving the
data may be located in the same Group or in another Group.

The MCCI graph executing Run-Time System requires minimal OS support. The OS
must span all processors within a Group. The expected services are:

a. Process/Thread Scheduling (including priority preemption, if possible). The
process/thread scheduling may be two level (such as Mercury provides with both
"process" and POSIX thread support) or a single task level (such as SPOX provides).

b. Semaphores for signaling/synchronizing both locally and within the Group. Both
blocking and non-blocking access functions are required. Time-outs are highly
desirable.

c. Messaging (mailbox or socket) both processor local and within the Group. Both
blocking and non-blocking functions are required. Time-outs are highly desirable.

d. Data transfer routines for reading and for writing data locally and within the Group.
The writing services must include provisions to block until the transfer has completed
and the data has been stored in the memory location(s). These services should use
the quickest transfer mechanism available. If the architecture supports a shared

Management Communications & Control, Inc. 16 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

memory model, these routines can be rather simple. If the architecture does not
support a shared memory model, these routines become more complex.

e. Dynamic memory allocation functions (alloc and free) must be provided.

f. If SHARCs are the target processor, it is highly desirable that code overlay support
be provided by both the OS and the compiler/linker. This is due to the limited on-chip
memory and the fact that there is a single off-chip bus.

There must be a method of messaging that exists between the host and at least one
processor within each Group. This messaging may be socket or mailbox. For
example, with the Mercury hardware, MCOS sockets are used for this type of
communications. Mercury provides the MCOS drivers for a variety of Sparc boards
executing Solaris.

There must also be a mechanism for sending data to and receiving data from any I/O
boards that interface with the external world. For example, Mercury provides services
to interface boards with the Raceway.

A run-time loading capability is highly desirable. This permits loading of new tasks
during run-time reconfiguration. If this is not provided, then the load image for each
processor must contain all code that can be executed on that processor for all
configurations of that application. Some loader must be supplied either as part of the
OS or as part of the Board Support Package.

There must be some method of accessing information so that the SRTS (during MCCI
porting to the platform) and applications can be debugged. It would be nice to have
stdio available from the signal processors. If stdio is not available from the signal
processors, file i/o and/or real-time printf capability from the signal processors would
prove very useful. As a minimum, post-mortem printf (e.g., from a trace buffer) must be
provided.

MCCI has been following the Navy sponsored Common Operating Environment (COE)
with interest. If a common OS API could be defined, the SRTS could be modified to
the API and not have to ported for each platform. Additionally, under a separate
program, MCCI will be investigating a MPI compliant interface. Assuming that an
efficient MPI compliant version of the SRTS can be developed, SRTS ports would not
be required for platforms that had MPI capability.

5.3 Reusable Domain Primitive Application Graphs
The reuse strategy is based on the portability of Domain Primitive Application Graphs,
DPAGs. DPAGs are completely target independent PGM data flow graph
specifications of signal and data processes. The middleware interfaces to target
specific computational routines incorporated in the Autocoding Toolset and the run-
time interfaces to target operating systems make it possible to generate executable
code implementing the DPAG specifications on all family targets. If properly exploited,

Management Communications & Control, Inc. 17 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

this reuse capability can profoundly affect acquisition and life cycle support strategies
for airborne signal processing systems to the advantage of the Navy.

5.4 HOL Control Program Reuse
The HOL control programs, programs invoking PGM command procedures with calls
to elements of the Command Program Interface Library, may be readily reused. The
Command Procedure Interface Library is available in 'C, and could be readily
extended for a version with the routines encapsulated in Ada. Command programs
are specific to the application and possibly the operating system of the embedded
host. Provided the formal inputs to the application are not changed in porting it to a
new target, the control program will be reusable with the new target if the same host
OS is used. Control programs themselves may be ported to a new host provided the
target interface support exists. This support is some means of messaging between the
host and the target (typically using a form of sockets).

6. Reuse of Existing AN/UYS-2 Applications
The Autocoding Toolset reuse capability offers the opportunity to reuse the $100M
plus AN/UYS-2 code base of PGM application graphs at minimal costs.

6.1 AN/UYS-2 Command Programs
The core functionality of a Command Program is to translate commands from an
external source such as an operator console into actions that configure/reconfigure the
application.

While the potential to convert AN/UYS-2 Command Programs exists, there are many
issues involved. The first is that AN/UYS-2 Command Programs were written in Ada
for execution on a 68030 processor. The cross compiler that was used is no longer
supported. Porting Ada to new targets is not as simple as a recompile.

Additionally, while both the AN/UYS-2 and the MCCI Autocoding Toolset are based on
PGM, the implementations have differences. The AN/UYS-2 implementation requires
the Command Program to perform system level operations such as creating mailboxes
for communications with Input Output Procedures (lOPs). The AN/UYS-2 implements
lOPs as Graph Support Programs. Each Graph Support Program must communicate
with the Command Program. The MCCI implementation requires communication with
the Graph Manager component of the SRTS only. Also, the AN/UYS-2 implementation
uses a concept called Graph Support Nodes for access to queue or graph variable
data by the Command Program or IOP. Graph Support Nodes are not defined in the
PGM Specification, and they are not used or supported by MCCI.

Thus, if it is desired to attempt to reuse AN/UYS-2 Command Programs, two porting
issues exist. (1) The Command Program will have to be recompiled using the GNAT
or some other Ada compiler. Compiler differences will have to be resolved using
standard debugging and code revision procedures. (2) Calls to the AN/UYS-2 GrM
interface must be replaced with equivalent calls to the Command Program Interface
Library elements. For the most part, this is a straightforward substitution of

Management Communications & Control, Inc. 18 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

semantically identical procedure calls. There is some Command Program functionality
introduced into the AT&T implementation that is not supported in the PGM specification
typically dealing with Graph Support Nodes and mailboxes. MCCI could add support
for these as required so that Command Program Interface Library call substitution may
be used for all AN/UYS-2 GrM interface functions. Some of the new support functions
would be simple stubs, others would be fairly complex.

6.2 Converting AN/UYS-2 Graphs
AN/UYS-2 graphs may be readily converted into DPAGs with simple graph editing.
Node statements for Q003 primitives must be edited into node statements for Domain
Primitives. In general, there is a many to one mapping of Q003 primitives into Domain
Primitives. To anyone familiar with AN/UYS-2 programming, the transformation will be
intuitive. The editing may be accomplished with the DSPGraph Tool or with a simple
text editor. Once converted to DPAGs, the AN/UYS-2 graphs may be autocoded for
any architecture that the Autocoding Toolset supports.

MCCI converted the AN/UYS-2 DICASS graph to a DPAG implementation as part of
this project. The top level graph is shown in Figure 9. The expanded graph contains
on the order of 609 nodes. The conversion results are described in Section 6.4
DICASS Conversion. Based on the conversion process performed on this application,
AN/UYS-2 graphs and referenced subgraphs can be readily converted to Domain
Primitive Graphs by performing the following steps:

1. Convert the primitive referenced (PRIMITIVE =) by each %NODE statement from a
Q003 primitive name to a Domain Primitive name. A cross reference table of Q003
Primitives to Domain Primitives can be found in Appendix A. For some conversions,
the parameter lists do not match. A cross reference table containing the parameter
lists can be found in Appendix B. For some primitives, more than one Domain
Primitive can be selected. To select the "proper" one, the user should understand the
functionality of the Q003 primitive in the context it is being used and should
understand the functionality of each of the Domain Primitive choices.

If a node in the Q003 graph references a chain, there will be no Domain Primitive
equivalent. Instead, the procedure of the next section should be followed.

2. If there is no Domain Primitive equivalent for the Q003 primitive, there are two
options. A request can be sent to MCCI to add a new Domain Primitive. Alternatively,
one can construct a 'C procedure and encapsulate it as a "Custom" Domain Primitive
as described in the user manuals for the MCCI Autocoding Toolset.

3. The AN/UYS-2 uses a 16 bit representation for single precision and a 32 bit
representation for double precision. Most newer targets use 32 bit for single precision
and 64 bit for double precision. Additionally, many newer targets do not have
hardware support for double precision (64 bit) and only provide software emulation
which does not execute quickly. Converting AN/UYS-2 double precision to 32 bit
single precision should therefore be performed by modifying the mode declarations in
the graph (e.g., DFLOAT is modified to FLOAT).

Management Communications & Control, Inc. 19 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

iiiniiiiriiiiiuiiuiiiiiiiii
llllllliiilllllllllQiyDlIJDiiEFlllllllill
■iiiiiiaDDOiiKiRnipniifiraii^iiiiiüPMii
■iiiiiiiiiiiinniiriDinriMDEiöDQMiiiiiii

IMMUNE
111111
Ml

Figure 9. DICASS Graph

Management Communications & Control, Inc. 20 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

6.3 AN/UYS-2 Chains
Chains written for the AN/UYS-2 require special treatment to port them to the
architecture family. Two approaches are possible; one is to reverse engineer the
chain from the PID language implementation, and the other is to use the graphical
representation, if it exists.

Chains for which there is no equivalent graphical specification may be handled in one
of several approaches. (1) A graphical specification may be reverse engineered from
the PID language. MCCI reverse engineered several graphical representation of
ALFS PIDs during the PIDGen program. Once a graph is obtained, the chain may be
handled as described above. (2) The PID language program may be rewritten as a 'C
program. Target specific math library calls may be substituted for E002 microcoded
procedure calls. Since PID language is a subset of 'C, this may be the easiest path
for chains for which graphical specifications do not exist. A planned encapsulation
tool will provide for their incorporation in the Domain Primitive Library as user
primitives.

A graphical representation of the chain's processing may be entered into the reuse
library as DPAGs. Subgraphs referring to the chain's DPAG may be substituted for the
chain node in the top level graphs. For P3UIV chains that are specified in graphical
format, this is the preferred approach. If the graphical format is not available, it may be
possible to locate documentation containing a pictorial representation from which the
graph can be reconstructed. NEPs and modes must be added to the iconic
representation in the P3UIV chain specification to make them complete DPAGs and
nodes must be converted to reference Domain Primitives. This entire procedure is a
relatively straightforward task as detailed below.

Some, if not all, existing AN/UYS-2 applications, contain one or more chains that will
have to be converted for inclusion in the ported application. A chain was constructed
from a segment of a graph. Chains increase the execution efficiency by increasing the
processing performed by a schedulable entity (i.e., the node). In many respects,
chains and MPIDs are similar.

In order to convert a chain for use with the MCCI implementation, the following process
is suggested. After the process has been described, an example will be shown. It is
assumed that the reader (and most definitely the person doing the conversion) is
familiar with PGM.

6.3.1 Creating the Graph from the Chain Description
The first two steps are to 1) create a graph containing nodes with underlying Q003
primitives and 2) convert the "Q003" graph to a "Domain Primitive" graph.

1. Beginning with the description of the chain, construct a graph using Q003
primitives. This is a relatively straightforward procedure using the written description
of the chain and the pictorial pseudo-graph diagram given in the description. The
diagram should contain each of the nodes, the PRIM_IN and PRIM_OUT lists for each

Management Communications & Control, Inc. 21 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

node, and the queue connectivity between nodes. The Node Execution Parameters
(threshold, read, offset, and consume) are not given, and they must be inferred from
the processing of the chain.

Additionally, the graph header must be derived. Determining the formal parameters is
made by examining the PRIM_IN and PRIM_OUT lists for the chain. However, there is a
distinction between a %NODE statement description and a %GRAPH description. The %NODE

statements have PRIM_IN and PRIM_OUT lists, while %SUBGRAPH statements have GIPS,

VARS, INPUTQS, and OUTPUTQS. Determining which of the PRIM_IN and PRIM_OUT

parameters are the formal input and output queues is normally straightforward. More
difficult is determining which of the other PRIM_IN and PRIMJDUT parameters should be
GIPS and which should be VARS. At this point, a best guess based on usage of the
parameter is suitable, as the determination will be revisited in a later step in the
conversion process.

2. Convert the graph from one using Q003 primitives to one using Domain Primitives.
This procedure is straightforward and is detailed elsewhere in this document. (See
Section 6.2 Converting AN/UYS-2 Graphs.)

6.3.2 Modifications Based on Application Specific Use

The next steps pertain to modifying the calling graph and to incorporating application
specific usage information into the graph implementing the chain.

3. Modify the calling graph by replacing the node statement with a subgraph
statement. This step can be tricky on occasion due to the mismatch between %NODE

statements and %SUBGRAPH statements noted previously. For the moment, ignore any
PIP_IN and PIP_OUT statements. Using the graph from step 2 as a template in
conjunction with the actual usage (i.e., GIPs and VARs) of entities in the %NODE

statement, create the SUBGRAPH statement. Modify the graph of step 2 as
appropriate, declaring the entities as either GIPS or VARS.

4. Next, any application specific usage related information must be incorporated. This
includes accounting for any PIP_INS and/or PIP_OUTS, valves and expressions that are
part of the %NODE statement. The ASNP chain example described below contains these
types of application specific information and describes how the information can be
incorporated.

6.3.3 CHN_ASNP Example

The conversion process for CHN_ASNP as used by the CWASCAN graph in the DICASS

application is shown as an example. The Chain Description is contained in Appendix
A. From this description, the Q003 graph implementing the chain is developed.

Graph Body:

The Graph Body is constructed directly from the chain description. First declare the
local queues. This information is taken directly from the chain description.

Management Communications & Control, Inc. 22 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%% LOCAL QUEUE LIST FROM CHAIN DESCRIPTION
%QUEUE(XI : DCFLOAT)
%QUEUE(X2 : DCFLOAT)
%QUEUE(X3 : DCFLOAT)
%QUEUE(X4 : DCFLOAT)
%QUEUE(X5 : DFLOAT)
%QUEUE(X6 : DCFLOAT)
%QUEUE(X7 : DCFLOAT)
%QUEUE(X8 : DCFLOAT)
%QUEUE(X9 : DFLOAT)
%QUEUE(XI0 : DFLOAT)
%QUEUE(Xll : INT)

Next construct the node statements, ignoring Node Execution Parameter (NEP) values,
and declaring variables (GIPS or VARS) as needed. Most of this information is taken
directly from the chain description figure by referring to the tables associated with each
node. Construction of two nodes, one referring to Q003 primitive DFC_FCTR and one
referring to Q003 primitive DCP_SPL is shown. A node name must be assigned to each
node. This name can be anything the user wishes, but each name must be unique.
For some parameters, it is useful to construct a variable. In the second node, the fourth
parameter, which is an array{FFTsz, i}, will be replaced by parameter SPLI_BLS.

%NODE (FCTR
PRIMITIVE = DFC_FCTR
PRIM_IN = DASC*FFTSZ,

2,
1,
BB,
FAMILY[OMNI, CRD]

THRESHOLD = ???
PRIM_OUT = FAMILY[XI]

)

%NODE(SPL1
PRIMITIVE = DCP_SPL
PIP_IN = ASNP_VALVE
PRIM_IN = DASC*FFTSZ,

1,
SPL1_BLS,
XI THRESHOLD = ???

PRIM_OUT = FAMILY[X2] VARIABLE VALVE = ASNP_VALVE
)

%% Need to declare variable SPL1_BLS
%GIP (SPL1_BLS : INT ARRAY(2) INITIALIZE TO {FFTSZ, 1})

The other %NODE statements are constructed in a similar fashion.

Graph Header

The Graph Header is constructed next. The information for this step is contained in the
Parameter List, augmented by the information in the Parameter Table. The Graph
Name and the INPUTQ and OUTPUTQ lists are usually easy to construct.

Management Communications & Control, Inc. 23 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%GRAPH(ASNP
INPUTQ = MEF

OMNI
CARD

OUTPUTQ = ASOT

DFLOAT,
DCFLOAT,
DCFLOAT
INT V_ARRAY(KK))

The Gip and VAR lists can be tricky, in that it is sometimes hard to determine if a
parameter should be a start-time parameter (GIP) or run-time parameter (VAR). At this
point, a best guess only is required. The lists will be revisited during a subsequent
step.

GIP

VAR

DASC INT,
NAS INT,
NS INT,
FFTSZ INT,
NIF INT,
NFSS INT,
BB INT,
ASWIND INT ARRAY(2),
REQ DFLOAT ARRAY(6),
MNA INT ARRAY(2),
DM1 INT,
DM2 INT,
%% V Arr* ly Size on output queue
%% nomine
Q.Q.

illy max will be KK = (NS*NFSS)/DASC +
0 O

KK INT
ASNP_VAL^ 7E : INT,
ASGN DFLOAT,
HEADER : INT ARRAY(8)

Note that a parameter, KK, for the maximum size of the v_array output queue was
added to the parameter list. This is to avoid hard coding the size into the OUTPUTQ
declaration.

At this point, the NEP values are still required. From the Chain Description, it is seen
that multiple execution depends upon the expression: NE = NS/DASC.
The nominal input data amount into DFC_FCTR is DASC*FFTSZ. If we multiply this amount
by NE, we obtain the threshold amount for INPUTQS OMNI and CARD., namely NS*FFTSZ.
The NEPS for the other nodes in the graph can be similarly derived.

Putting together all the pieces, we obtain the Q003 Primitive graph:

%GRAPH(ASNP
GIP

9-9-9-9-9-9- o o o o 0 0

DASC INT,
NAS INT,
NS INT,
FFTSZ INT,
NIF INT,
NFSS INT,

CHN ASNP Q003 version

Management Communications & Control, Inc. 24 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

BB INT,
ASWIND INT ARRAY(2),
REQ DFLOAT ARRAY(6),
MNA INT ARRAY(2),
DM1 INT,
DM2 INT,
KK INT 9-9-

9-9-
"O'O

VAR = ASNP_VALVE: INT,
9-9-
'O'O

ASGN DFLOAT,
HEADER INT ARRAY(8)

INPUTQ = MEF DFLOAT,
OMNI DCFLOAT,
CARD DCFLOAT

OUTPUTQ = ASOT INT V_ARRAY(KK)

%% V Array Size on output queue
nominally max will be KK =
(NS*NFSS)/DASC + 8

)

%GIP (SPL1_BLS
%GIP (SPL2_BLS

INT ARRAY(2) INITIALIZE TO {FFTSZ, 1}
INT ARRAY(2) INITIALIZE TO {NAS, 1})

%QUEUE(XI : DCFLOAT)
%QUEUE(X2 : DCFLOAT)
%QUEUE(X3 : DCFLOAT)
%QUEUE(X4 : DCFLOAT)
%QUEUE(X5 : DFLOAT)
%QUEUE(X6 : DCFLOAT)
%QUEUE(X7 : DCFLOAT)
%QUEUE(X8 : DCFLOAT)
%QUEUE(X9 : DFLOAT)
%QUEUE(XI0 : DFLOAT)
%QUEUE(Xll : INT)

%NODE (FCTR
PRIMITIVE = DFC_FCTR
PRIM. IN = DASC*FFTSZ,

2,
1,
BB,
FAMILY[OMNI, CRD]

THRESHOLD = NS*FFTSZ

)
PRIM. _OUT = FAMILY[XI]

%NODE(I 3PL1
PRIMITIVE = DCP_SPL
PIP_ EN = ASNP_VALVE
PRIM. _IN = DASC*FFTSZ,

1,
SPL1_BLS,
XI THRESHOLD = NS*FFTSZ

PRIM. _OUT = FAMILY[X2] VARIABLE VALVE = ASNP VALVE
)

%NODE(SPL2
PRIMITIVE
PIP_IN
PRIM IN

DCP_SPL
ASNP_VALVE
DASC*NAS,
1/

Management Communications & Control, Inc. 25 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

SPL2_BLS,
MEF THRESHOLD = NS*NAS

PRIM_OUT = FAMILY[X5] VARIABLE VALVE = ASNP_VALVE

%NODE(REORD
PRIMITIVE
PRIM IN

PRIM_OUT
)

DFC_REORD
FFTSZ,
FFTSZ,
1,
FFTSZ/2+1,
FFTSZ/2+2,
FFTSZ
X2 THRESHOLD = NS*FFTSZ/DASC
X3

%NODE(SPL3
PRIMITIVE = DCP_SPL
PRIM_IN = FFTSZ,

1,
ASWIND,
X3 THRESHOLD = NS*FFTSZ/DASC

PRIM_OUT = FAMILY[X4]

%NODE(MUL
PRIMITIVE = VRC_MUL
PRIM_IN = NAS*NS/DASC,

1,
X5 THRESHOLD = NAS*NS/DASC,
X4 THRESHOLD = NS*FFTSZ/DASC

PRIM OUT = X6

%NODE(REORD2
PRIMITIVE =
PRIM_IN

PRIM_OUT
)

DFC_REORD
NAS,
NIF,
1,
(NAS+l)/2,
(NAS+l)/2,
NAS,
X6 THRESHOLD = NAS*NS/DASC
X7

%NODE(FFT
PRIMITIVE
PRIM IN

PRIM_OUT
)

FFT_CC
NIF,
NFSS,
1,
(NIF-NFSS)/2 +1,
X7 THRESHOLD = NIF*NS/DASC
X8

%NODE(PWR
PRIMITIVE
PRIM IN

VOC_PWR
NFSS,

Management Communications & Control, Inc. 26 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

X8 THRESHOLD = NFSS*NS/DASC
PRIM_OUT = X9,

UNUSED
)

%NODE(LOG
PRIMITIVE
PRIM IN

PRIM_OUT
)

%NODE(LRQT
PRIMITIVE
PRIM IN

VOR_LOG
NFSS*NS/DASC,
ASGN,
2,
0.0E0,
X9 THRESHOLD
XI0

NFSS*NS/DASC

PRIM_OUT
)

DFC_LRQT
NFSS*NS/DASC,
REQ(l),
REQ(2),
REQ(3),
REQ(4),
REQ(5),
REQ(6),
X10 THRESHOLD = NFSS*NS/DASC
XI1

%NODE(HDI
PRIMITIVE
PRIM IN

DFC_HDI
NFSS*NS/DASC,
1,
1,
HEADER,
MNA,
DM1,
DM2,
Xll THRESHOLD = NFSS*NS/DASC

PRIM_OUT = UNUSED,
UNUSED,
ASOT

)

The Q003 Graph is converted to a Domain Primitive Graph. This requires the following
substitutions/modifications:

1. For each node, replace the Q003 primitive with the corresponding Domain
Primitive. The corresponding Domain Primitive can be determined by referring to the
"Generalized Mapping Q003 Primitives to Domain Primitives." Change the PRIM_IN
and PRIM_OUT lists as required, according to the information found in "Mapping of
Parameters Q003 Primitives to Domain Primitives." Reference the "Domain Primitive
Descriptions" and the Q003 Descriptions as necessary.

2. Some primitives may need to be changed due to how the primitive is being used.
As will be shown in the example, the primitive DFC_FCTR is mapped first to D_FLOC based
on the entry in the "Generalized Mapping Q003 Primitives to Domain Primitives."

Management Communications & Control, Inc. 27 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Upon further examination of how the primitive is used (namely one output queue), the
functionality required is that of D_FANIN.

Some variables may have to be created or modified to satisfy the requirements of the
Domain Primitive. As an example, D_FANIN requires a variable (p) specifying a two
dimensional of elements that are to be output onto each output queue, whereas
DFC_FCTR requires only a single dimension array.

3. In some case, additional nodes must be added to the graph. As an example, the
Domain Primitive D_LRQT, as currently implemented, does not convert FLOAT input to INT

output. Therefore, it is necessary to explicitly convert the output queue by adding a
node with a D_RTOI primitive and also adding a queue to connect the two nodes.

4. The AN/UYS-2 single precision modes are 16 bit entities and double precision
modes are 32 bit entities. For the MCCI system, single precision is nominally 32 bit
(target dependent). The modes of GIPS, VARS, and QUEUES should be converted in that
all double precision entities should be modified to single precision (e.g. DFLOAT =>
FLOAT.)

Performing these modifications on the ASNP Q003 graph yields the following Domain
Primitive Graph:

%GRAPH(ASNP %% Domain Primitive Version
GIP

DASC
NAS
NS
FFTSZ
NIF
NFSS
BB
ASWIND
REQ
MNA
DM1
DM2
%% V Ar:
%% nomir
2-9- "o"o

KK

INT,
INT,
INT,
INT,
INT,
INT,
INT,
INT ARRAY(2),
FLOAT ARRAY(6) ,
INT ARRAY(2) ,
INT,
INT,

ray Size on output queue
lally KK = (NS*NFSS)/DASC + 8

INT
VAR = ASNP_VAI

ASGN
HEADER

.JVE : INT,
FLOAT,
INT ARRAY(8)

INPUTQ = MEF FLOAT,
OMNI CFLOAT,
CARD CFLOAT

OUTPUTQ = ASOT INT V_ARRAY(KK))

%GIP(SPL1_ _BLS : INT ARRAY(2) INITIALIZE TO {FFTSZ, 1})
%GIP(SPL2_ _BLS : INT ARRAY(2) INITIALIZE TO {NAS, 1})
%GIP(P. _FANIN : INT ARRAY(4) INITIALIZE TO {NS*FFTSZ, 0, C), NS*FFTSZ})

%QUEUE(XI : CFLOAT)
%QUEUE(X2 : CFLOAT)

Management Communications & Control, Inc. 28 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%QUEUE(X3 CFLOAT)
%QUEÜE(X4 CFLOAT)
%QUEUE(X5 FLOAT)
%QUEUE(X6 CFLOAT)
%QUEUE(X7 CFLOAT)
%QUEUE(X8 CFLOAT)
%QUEUE(X9 FLOAT)
%QUEUE(XI0 FLOAT)
%QUEUE(Xll FLOAT)
%QUEUE(X12 INT)

%NODE(FCTR 9-9-
"5 ~o

9-9- "5 "5
9-9-

PRIMITIVE = D FANIN
9-9- "5 "5
0,0.
o o

PRIM IN

PRIMOUT =

NS*FFTSZ,
2,
P_FANIN,
BB,
FAMILY[OMNI,
XI,
UNUSED

Selects either OMNI or CARD input
based on BB

BB = 1 => OMNI
BB otherwise => CARD

changed to FANIN from FLOC

CARD] THRESHOLD = NS*FFTSZ

%NODE(SPL1
PRIMITIVE
PIP_IN
PRIM IN

D_SPL
ASNP_VALVE
DASC*FFTSZ,
1,
SPL1_BLS,
XI THRESHOLD = NS*FFTSZ

PRIM OUT
)

— FAMILY[X2] VARIABLE VALVE = ASNP_VALVE

%NODE(SPL2
PRIMITIVE = D SPL
PIP IN = ASNP VALVE
PRIM_IN = DASC*NAS,

1,
SPL2_BLS,
MEF THRESHOLD = NS*NAS

PRIM_OUT = FAMILY[X5] VARIABLE VALVE = ASNP_VALVE
)

%NODE(REORD
PRIMITIVE
PIP_IN
PRIM IN

PRIM_OUT =

D_REORD
ASNP_VALVE
FFTSZ,
FFTSZ,
1,
(FFTSZ/2)+l,
(FFTSZ/2)+2,
FFTSZ,
X2 THRESHOLD
X3)

= (NS*FFTSZ)/DASC

%NODE(SPL3
PRIMITIVE
PRIM IN

D_SPL
FFTSZ,

Management Communications & Control, Inc. 29 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIM OUT

1,
ASWIND,
X3 THRESHOLD
FAMILY[X4])

= (NS*FFTSZ)/DASC

%NODE(MUL
PRIMITIVE = D_VMUL
PRIM_IN = (NS*NAS)/DASC,

0,
X5 THRESHOLD = (NS*NAS)/DASC,
X4 THRESHOLD = (NS*NAS)/DASC

PRIM_OUT = X6)

%NODE(REORD2
PRIMITIVE =
PRIM IN

PRIM OUT =

D_REORD
NAS,
NIF,
1,
(NAS-l)/2,
(NAS+l)/2,
NAS,
X6 THRESHOLD
X7)

= (NS*NAS)/DASC

%NODE(FFT
PRIMITIVE
PRIM IN

PRIM OUT

D_FFT
NIF,
NFSS,
1,
((NIF-NFSS)/2)+l,
UNUSED,
X7 THRESHOLD = (NS*NIF)/DASC
X8)

%NODE(PWR
PRIMITIVE
PRIM IN

PRIM_OUT =

D_PWR
NFSS,
UNUSED,
X8 THRESHOLD
X9,
UNUSED)

(NS*NFSS)/DASC

%NODE(LOG
PRIMITIVE
PRIM IN

PRIM OUT

D_LOG
(NS*NFSS)/DASC,
2,
ASGN,
0.0E0,
X9 THRESHOLD =
X10)

(NS*NFSS)/DASC

%NODE(LRQT
PRIMITIVE
PRIM IN

D_LRQT
(NS*NFSS)/DASC,
REQ(l),
REQ(2),
REQ(5),
REQ(6),
REQ(3),
REQ(4),

Management Communications & Control, Inc. 30 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

X10 THRESHOLD = (NS*NFSS)/DASC
PRIMJOUT = XI1)

%NODE(CNVRT
PRIMITIVE = D_RTOI
PRIM_IN = NS*NFSS/DASC,

UNUSED,
UNUSED,
Xll THRESHOLD = NS*NFSS/DASC

PRIM_OUT = X12
)

%NODE(HDI
PRIMITIVE = D_HDI
PRIM_IN = (NS*NFSS)/DASC,

1,
HEADER,
MNA,
DM1,
DM2,
X12 THRESHOLD = (NS*NFSS)/DASC

PRIM_OUT = UNUSED,
UNUSED,
ASOT

)
%ENDGRAPH

The next step is to examine how the chain is used in the application. In this example,
the node referencing CHN_ASNP is in the graph CWASCAN. The %NODE statement extracted
from CWASCAN is:

%NODE (ASCN
PRIMITIVE = CHN_ASNP
PIP_IN = CARD,

ASEL,
CARDBEAR,
VLV

THRESHOLD = 1
PRIM_IN = SDNS,

NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB(IF CARD+ASEL+CARDBEAR EQ 0 THEN 1 ELSE 2),
(IF VLV EQ MN THEN 1 ELSE 0) ,
ASWIND,
ASGN,
REQ,
HEADER,
MNA,
DM1

THRESHOLD = 1,
DM2,
MEF

THRESHOLD = NS*NAS,
OMNI

Management Communications & Control, Inc. 31 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

THRESHOLD = NS*FFTSZ,
CRD

THRESHOLD = NS*FFTSZ
PRIM_OUT = ASOT
PIP_OUT = DM1

PRODUCE = 1 OF 0,
VLV

VARIABLE PRODUCE = 1 OF
(IF VLV EQ MN THEN 1 ELSE VLV+1)

)

From the information in the %NODE statement, the chain description, and the graph
header from the ASNP Domain Primitive graph, the %SUBGRAPH statement that will be
inserted into CWASCAN to replace the %NODE statement can be constructed.

First, the subgraph must be given a name and the underlying graph must be
referenced:

%SUBGRAPH (ASCN
GRAPH = ASNP

The iNPUTQ and OUTPUTQ lists are readily extracted from the %NODE statement. The
queues MEF, OMNI, and CRD are input queues as expected. The queue ASOT is an
output queue as expected. The parameter DMI is also a queue.

There is also a feedback queue (both an input and output from the same node) named
VLV, associated with a PIP_IN and PIP_OUT. This will be ignored for the moment.

This leads to the following list.

INPUTQ = DMI,
MEF,
OMNI,
CRD

OUTPUTQ = DMI,
ASOT

Next the GIP and VAR lists are constructed from the %NODE statement and the graph
CWASCAN.

The following %NODE statement parameters are formal GIPS to the graph CWASCAN : SDNS,

NS, FFTSZ, NiF, and NFSS.

The following %NODE statement parameters are local GIPS to the graph CWASCAN : NAS,

REQ, BB, and MNA.

The following %NODE statement parameters are formal VARS to the graph CWASCAN :
ASWIND, ASGN, HEADER.

The %NODE statement entry corresponding to the ASNP_VALVE parameter is an
expression and therefore ASNP_VALVE must be a VAR.

Management Communications & Control, inc. 32 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Based on these observations, the following GIP and VAR lists are constructed:

GIP = SDNS,
NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB,
REQ,
MNA,
DM2

VAR = ASNP_VALVE ,
ASWIND,
ASGN,
HEADER

Putting this together, the preliminary % SUBGRAPH statement becomes:

%SUBGRAPH (ASCN
GRAPH = ASNP
GIP = SDNS,

NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB,
REQ,
MNA,
DM2

VAR = ASNP_VALVE,
ASWIND,
ASGN,
HEADER

INPUTQ = VLV,
DM1,
MEF,
OMNI,
CRD

OUTPUTQ = VLV,
DM1,
ASOT

)

The preliminary %SUBGRAPH statement must now be reconciled with the graph header
for the ASNP Domain Primitive graph. It must be remembered that the %SUBGRAPH
statement contains actual arguments while the ASNP Domain Primitive graph contains
formal arguments. (Actual names may be the same as formal names but are not
required to be identical.)

The following changes must be made to the ASNP Domain Primitive graph header:

ASWIND was declared as a GIP and needs to be a VAR.

Management Communications & Control, Inc. 33 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

DMi was declared as a GIP and needs to be an INPUTQ and an OUTPUTQ.

The following changes must be made in the %SUBGRAPH statement:

The CWASCAN GIP parameter VASZ must be passed to the ASNP Domain Primitive
graph parameter KK. This parameter is used to set the maximum size of the v_array
output queue ASOT.

The ASNP Domain Primitive graph header becomes:

%GRAPH(ASNP %% Domain Primitiv
GIP =

DASC INT,
NAS INT,
NS INT,
FFTSZ INT,
NIF INT,
NFSS INT,
BB INT,
REQ FLOAT ARRAY(6),
MNA INT ARRAY(2),
DM2 INT,
%% V Array Size on output queue
%% nominally KK = (NS*NFSS)/DAS
9-2-

KK INT
VAR = ASNP_VAI JVE : INT,

ASWIND : INT ARRAY(2),
ASGN FLOAT,
HEADER INT ARRAY(8)

INPUTQ = DMI INT,
MEF FLOAT,
OMNI CFLOAT,
CARD CFLOAT

OUTPUTQ = DMI INT,
ASOT INT V_ARRAY(KK))

The % SUBGRAPH statement becomes:

%SUBGRAPH (ASCN
GRAPH = ASNP
GIP = SDNS,

NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB,
REQ,
MNA,
DM2,
VASZ

VAR = ASNP_VALVE,
ASWIND,
ASGN,
HEADER

Management Communications & Control, Inc. 34 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

INPUTQ = DM1,
MEF,
OMNI,
CRD

OUTPUTQ = DM1,
ASOT

)

Finally, the remaining items in the CWASCAN graph %NODE statement (PIP_IN, PIP_OUT,

and expressions) must be included into the application specific ASNP Domain Primitive
graph.

First, the expression associated with BB is considered. The expression contains three
variables (CARD, ASEL, and CARDBEAR) that are formal VARS to the CWASCAN graph. These
variables must be formals to the ASNP Domain Primitive graph. The VAR list becomes:

VAR = CARD,
ASEL,
CARD_BEAR,
ASNP_VALVE,
ASWIND,
ASGN,
HEADER

Note that the order is arbitrary provided that the calling %SUBGRAPH statement and the
graph header mate correctly.

The expression is evaluated to select an element from the variable BB that is a local
Gip to the CWASCAN graph. The variable BB contains two elements {1, 2}. It is
interesting to note that the expression evaluates to these same values. Because of
this, it is possible to eliminate the variable BB, and just use the expression. It was
decided to just use the expression and eliminate BB to avoid the run-time slicing of BB.

Next, the functionality of the feedback queue VLV is considered. This functions as a
modulo counter. Every time the node executes, the value of the integer token placed
onto the feedback queue is increased by one until the value at the beginning of
execution of the node is equal to MN. When that occurs, a value of 1 is produced. This
functionality must be placed into the ASNP Domain Primitive subgraph via PIP_IN and
PIP_OUT mechanism associated with the FCTR node. The variable MN which is part of
the valve expression must be added to the graph header. This variable is a formal GIP
to the CWASCAN graph and will therefore be a formal GIP to the ASNP Domain Primitive
Graph.

%NODE(FCTR
PRIMITIVE = D_FANIN
PIP_IN = VLV
PRIM_IN = NS*FFTSZ,

2,
P_FANIN,
BB,
FAMILY[OMNI, CARD] THRESHOLD = NS*FFTSZ

Management Communications & Control, Inc. 35 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIM_OUT = XI,
UNUSED

PIP_OUT = VLV VARIABLE PRODUCE = 1 OF (IF VLV EQ MN THEN 1 ELSE VLV+1)
)

The queue VLV can either be declared as a local queue or as both a formal INPUTQ and
a formal OUTPUTQ. If it is declared as a local queue, the initialization contained in the
CWASCAN graph must be included in the ASNP Domain Primitive graph. It was decided to
make it formal to maintain consistency with the original graph.

Additionally, since the value of VLV is used by two other nodes (SPLI and SPL2), the
value of VLV must be passed to these two nodes. This is done by creating two queues
of mode INT, creating two PIP_OUTS on the FCTR node one for each queue, and creating
a PIP_IN on the SPLI and SPL2 nodes.

Next the expression ((IF VLV EQ MN THEN I ELSE O)) in the PRIM_IN list that is
associated with the parameter ASNP_VALVE is considered. This variable is used by two
nodes (SPLI and SPL2). The value for VLV was declared as a PIP_IN in the
modifications described in the previous paragraph. The expression is substituted for
the parameter ASNP_VALVE in the PRIM_IN list for nodes SPLI and SPL2. The parameter
ASNP_VALVE is no longer used and is removed from the formal VAR list and the
% SUBGRAPH statement.

When these modifications have been included, the ASNP Domain Primitive graph
becomes:

%% Domain Primitive Version
9-0-

%GRAPH(ASNP
GIP = DASC : INT,

NAS : INT,
NS : INT,
FFTSZ : INT,
NIF : INT,
NFSS : INT,
BB : INT ARRAY(2),
REQ : FLOAT ARRAY(6),
MNA : INT ARRAY(2),
DM2 : INT,

%% V Array Size on out
%% nominally KK = (NS*
9-9- o o

KK : INT,
MN : INT

VAR = CARDI : INT,
ASEL : INT,
CARD_BEAR : INT,
ASWIND : INT ARRAY(2),
ASGN : FLOAT,
HEADER : INT ARRAY(8)

INPUTQ = VLV : INT,
DM1 : INT,
MEF : FLOAT,

(NS*NFSS)/DASC +

Management Communications & Control, Inc. 36 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

OMNI : CFLOAT,
CARD : CFLOAT

OUTPUTQ = VLVP : INT,
DMIP : INT,
ASOT : INT V_ARRAY(KK))

%GIP(SPL1_BLS : INT ARRAY(2) INITIALIZE TO {FFTSZ, 1})
%GIP(SPL2_BLS : INT ARRAY(2) INITIALIZE TO {NAS, 1})
%GIP(P_FANIN : INT ARRAY(4) INITIALIZE TO {NS*FFTSZ, 0, 0,

NS*FFTSZ})
%QUEUE(XI : CFLOAT)
%QUEUE(X2 : CFLOAT)
%QUEUE(X3 : CFLOAT)
%QUEUE(X4 : CFLOAT V_ARRAY ((NS*NAS)/DASC))
%QUEUE(X5 : FLOAT V_ARRAY ((NS*NAS)/DASC))
%QUEUE(X6 : CFLOAT)
%QUEUE(X7 : CFLOAT)
%QUEUE(X8 : CFLOAT)
%QUEUE(X9 : FLOAT)
%QUEUE(XI0 : FLOAT)
%QUEUE(XI1 : FLOAT)
%QUEUE(X12 : INT)
%QUEUE(VLV1 : INT)
%QUEUE(VLV2 : INT)

%% Selects =ither OMNI or CARD input
%% based on BB
%% BB = 1 => OMNI
%% BB otherwise => CARD
%% changed to FANIN from FLOC
o o

%NODE(FCTR
PRIMITIVE = D_FANIN
PIP_IN = CARDI,

PRIM_IN

PRIM_OUT

PIP OUT

%NODE(SPL1
PRIMITIVE
PIP_IN
PRIM IN

PRIM_OUT
%NODE(SPL2

PRIMITIVE
PIP_IN
PRIM IN

ASEL,
CARD_BEAR,
VLV THRESHOLD = 1
NS*FFTSZ,
2,
P_FANIN,
(IF ((CARDI+ASEL)+CARD_BEAR) EQ 0 THEN 1 ELSE 2),
FAMILY[OMNI,CARD] THRESHOLD = NS*FFTSZ
XI,
UNUSED
VLVP VARIABLE PRODUCE =
VLV1 VARIABLE PRODUCE =
VLV2 VARIABLE PRODUCE =

1 OF (IF VLV EQ MN THEN 1 ELSE VLV+1),
1 OF VLV,
1 OF VLV)

D_SPL
VLV1 THRESHOLD = 1
DASC*FFTSZ,
1,
SPL1_BLS,
XI THRESHOLD = NS*FFTSZ
FAMILY[X2] VARIABLE VALVE (IF VLV1 EQ MN THEN 1 ELSE 0))

D_SPL
VLV2 THRESHOLD
DASC*NAS,
1,
SPL2_BLS,

= 1

Management Communications & Control, Inc. 37 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIM_OUT
%NODE(REORD

PRIMITIVE
PRIM IN

PRIM_OUT
?>NODE(SPL3

PRIMITIVE
PRIM IN

PRIM_OUT
%NODE(MUL

PRIMITIVE
PRIM IN

PRIMJDUT =
%NODE(REORD2

PRIMITIVE =
PRIM IN

MEF THRESHOLD = NS*NAS
FAMILY[X5] VARIABLE VALVE = (IF VLV2 EQ MN THEN 1 ELSE 0))

D_REORD
FFTSZ,
FFTSZ,
1,
(FFTSZ/2)+l,
(FFTSZ/2)+2,
FFTSZ,
X2 THRESHOLD
X3)

PRIM_OUT
%NODE(FFT

PRIMITIVE
PRIM IN

PRIM_OUT
%NODE(PWR

PRIMITIVE
PRIM IN

PRIM OUT

%NODE(LOG
PRIMITIVE
PRIM IN

(NS*FFTSZ)/DASC

D_SPL
FFTSZ,
1,
ASWIND,
X3 THRESHOLD
FAMILY[X4])

(NS*FFTSZ)/DASC

D_VMUL
(NS*NAS)/DASC,
0,
X5 THRESHOLD = (NS*NAS)/DASC,
X4 THRESHOLD = (NS*NAS)/DASC
X6)

D_REORD
NAS,
NIF,
1,
(NAS-l)/2,
(NAS+l)/2,
NAS,
X6 THRESHOLD
X7)

= (NS*NAS)/DASC

D_FFT
NIF,
NFSS,
1,
((NIF-NFSS)/2)+l,
UNUSED,
X7 THRESHOLD = (NS*NIF)/DASC
X8)

D_PWR
NFSS,
UNUSED,
X8 THRESHOLD
X9,
UNUSED)

= (NS*NFSS)/DASC

D_LOG
(NS*NFSS)/DASC,
2,
ASGN,
0.0E0,
X9 THRESHOLD = (NS*NFSS)/DASC

PRIMJDUT = XI0)

Management Communications & Control, Inc. 38 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%NODE(LRQT
PRIMITIVE = D_LRQT
PRIM_IN = (NS*NFSS)/DASC,

REQ(l),
REQ(2),
REQ(5),
REQ(6),
REQ(3),
REQ(4),
X10 THRESHOLD = (NS*NFSS)/DASC

PRIM_OUT = XI1)
%NODE(CNVRT

PRIMITIVE = D_RTOI
PRIM_IN = (NS*NFSS)/DASC,

UNUSED,
UNUSED,
Xll THRESHOLD = (NS*NFSS)/DASC

PRIM_OUT = XI2)
%NODE(HDI

PRIMITIVE = D_HDI
PRIM_IN = (NS*NFSS)/DASC,

1,
HEADER,
MNA,
DM1 THRESHOLD = 1,
DM2,
X12 THRESHOLD = (NS*NFSS)/DASC

PRIM_OUT = UNUSED,
UNUSED,
ASOT

PIP_OUT = DM1P PRODUCE = 1 OF 0)
%ENDGPAPH

The modified CWASCAN graph is obtained by replacing the %NODE statement by the
%SUBGRAPH statement and making the other changes discussed. The modified CWASCAN
graph is:

./src/dccwas.grf:

%% GRAPH 'CWASCAN ' %%
%% SPGN generated from GRED %%
%% Thu Mar 18 13:23:41 1993 %%
o o 9-9-
"o"o o o

%%***********************************
9-9- "5 "5

%% Unit: DICASS CWL,M,S A-Scan (150208, 150308, 150408)
9-9- o o

%% Designed by: D. C. Lui
%% Coded by: D. C. Lui
%% Tested by: D. C. Lui and V. J. Izzo

%% Purpose: Performs omni/cardioid selection, windowing, reorder, zero
%% fill, IFFT, detection, log and scaling, requantization and

Management Communications & Control, Inc. 39 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

AIU header insert.

Initial Conditions: See the GIP list and the QUEUE list below for
initial conditions.

Inputs: Cardioid and omni FFT data from Input Process Unit, normalized
window weights from Cardioid Mean Estimation Unit and control
parameters.

Outputs: A-Scan time series data for AIU via IOP.

Requirements: SRS Section 3.4.2.16.2.2.1.17 to 3.4.2.16.2.2.1.21,
02/01/90

%GRAPH (CWASCAN
GIP = VASZ

PB
PTYPE
DASC
FFTSZ

NFSS
NIF
NS

MN

VAR
SDNS

CARD
ASEL
CARDBEAR

ASGN :
HEADER
ASWIND

INT,
INT,
INT,
INT,
INT,

NFSS =
NFSS =

INT,
INT,
INT,

MN =>
: INT,
SDNS =
SDNS =
: INT

%% VASZ => Max V_ARRAY size
%% PB => Number of passband bins
%% PTYPE => Ping type: CWL=1, CWM=2, CWS=3
%% DASC => Input decimation rate CWL,M=10 CWS=
%% FFTSZ => FFT size

=> Number of bins selected for output from IFFT
> CWL,M=205, CWS=20

%% NIF => IFFT size
%% NS => Number of scans per processing block.

Number of input blocks CWL,CWM=DASC/NS, CWS=1

=> Number of scans for input decimation.
> CWL,CWM=NS CWS=DASC

CARD => Normal/Cardioid selection 0=normal, l=cardioid
: INT,
: INT, %% ASEL => Audio selection 0=omni, l=cardioid
: INT, %% CARDBEAR => Bearing enhance

%% CARDBEAR => 0=omni, l=cardioid
DFLOAT,
: INT ARRAY(8)
: INT ARRAY(2)

INPUTQ = OMNI
CRD

MEF
OUTPUTQ =

ASOT

ASGN => A-Scan amplitude adjustment factor
% HEADER => AIU header
% ASWIND => band selection array for

%% DCP_SPL
: DCFLOAT, %% Omni data from Input Process Unit
: DCFLOAT, %% Cardioid data from Input Process Unit
Normalized weights from Cardioid Mean Estimation Unit
: DFLOAT

A-Scan output to Flow Control LLCSC
: INT V_ARRAY(VASZ)

DECLARATIONS section (%GIP, %VAR, %QUEUE)

%GIP (AFLL DFLOAT %% 21ogl0, base 2 for lower clipping in requantization
INITIALIZE TO 6.643856188E00)

%GIP (AFC : DFLOAT %% Requantization conversion factor
INITIALIZE TO 1.28E+02/AFLL)

%GIP (AFLU : DFLOAT %% Upper clipping for requantization
INITIALIZE TO (1.27E+02/1.28E+02)*AFLL)

Management Communications & Control, Inc. 40 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%GIP (AFSA : DFLOAT %% Requantization offset
INITIALIZE TO 0.0E+00)

%GIP (REQ : DFLOAT ARRAY(6) %% Requantization array
INITIALIZE TO { AFC, AFSA*AFC, AFLU-AFSA, (-1.0E+00*AFLL)-AFSA,

(1.27E+02/AFC)-AFSA, (-1.27E+02/AFC)-AFSA })

%GIP (ASCANFG : INT %% A-Scan data type for AIU header
INITIALIZE TO 24)

%GIP (DM2 : INT %% Data mask 2 for AIU header
INITIALIZE TO PTYPE*512+ASCANFG*4)

%GIP (MNA : INT ARRAY(2) %% Words to be ORed in AIU header
INITIALIZE TO { 6, 6 })

%GIP (MNS : INT %% Total number of scans
INITIALIZE TO MN*NS)

%GIP (NID : INT %% Processing block size after bin reorder and padding.
INITIALIZE TO (MNS/DASC)*NIF)

%GIP (NSD : INT %% Processing block size after IFFT
INITIALIZE TO (MNS/DASC)*NFSS)

%GIP (NAS : INT %% Number of FFT bins selected for a a-scan band
INITIALIZE TO PB+6)

%GIP (NAD : INT %% Processing block size after FFT bin selection
INITIALIZE TO (MNS/DASC)*NAS)

%GIP (OUTST : INT %% Output starting bin number for IFFT output
INITIALIZE TO ((NIF-NFSS)/2)+1)

%% Omni/Cardioid selection array for input flow control
%GIP (BB : INT ARRAY(2) INITIALIZE TO { 1, 2 })

%QUEUE (DM1 : INT %% First data block flag
INITIALIZE TO 1 OF 8192)

%QUEUE (VLV : INT %% Valve control
INITIALIZE TO 1 OF MN)

9-9-
'O'O TOPOLOGY section (%NODE, %SUBGRAPH)

%%NODE (ASCN
9-9-
-Q-5 PRIMITIVE = CHN_ASNP
9-9- o o PIP_ IN = CARD,
9-9-
"O-O ASEL,
9-9- "5 "5 CARDBEAR,
9-9-
"O 0 VLV
9-9-
~5 "6 THRESHOLD = 1
9-9- "5 "6 PRIM _IN = SDNS,
9-9- o o NAS,
9-9-
'O'O NS,
9-9- "5 "5 FFTSZ,
9-9- "5 o NIF,
9-9- "o o NFSS,
9-9-
"5 ~5 BB(IF CARD+ASEL+CARDBEAR EQ 0 THEN 1 ELSE 2),

Management Communications & Control, Inc. 41 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIMjOUT
PIP OUT

(IF VLV EQ MN THEN 1 ELSE 0),
ASWIND,
ASGN,
REQ,
HEADER,
MNA,
DM1

THRESHOLD = 1,
DM2,
MEF

THRESHOLD = NS*NAS,
OMNI

THRESHOLD = NS*FFTSZ,
CRD

THRESHOLD = NS*FFTSZ
ASOT
DM1

PRODUCE = 1 OF 0,
VLV

VARIABLE PRODUCE = 1 OF
(IF VLV EQ MN THEN 1 ELSE VLV+1)

%SUBGRAPH (ASCN
GRAPH
GIP

VAR

INPUTQ

OUTPUTQ =

ASNP
SONS,
NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB,
REQ,
MNA,
DM2,
VASZ,
MN
CARD,
ASEL,
CARDBEAR,
ASWIND,
ASGN,
HEADER
VLV,
DM1,
MEF,
OMNI,
CRD
VLV,
DM1,
ASOT

%ENDGRAPH

6.4 DICASS Conversion
A version of the DICASS Sonobuoy application was converted from the AN/UYS-2
implementation to a DPAG implementation. This process involved:

Management Communications & Control, Inc. 42 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

a. Converting the AN/UYS-2 DICASS graph and referenced subgraphs from
nodes referencing Q003 primitives to nodes referencing Domain Primitives as
described in Section 6.2 Converting AN/UYS-2 Graphs.

b. Converting the ASNP and BDWF chains from AN/UYS-2 chains to Domain
Primitive Subgraphs as described in Section 6.3 AN/UYS-2 Chains.

c. Implementing eighteen new Domain Primitives that implement sonobuoy,
display formatting, and/or DICASS specific processing.

6.4.1 Graph and Subgraphs
The philosophy regarding the conversion of the DICASS graph and related subgraphs
was to make as few modifications as possible, especially in regards to the DICASS
graph formal interface. This philosophy may or may not be desirable depending upon
the target platform on which the ported application will execute. Most AN/UYS-2
applications contain a large amount of display formatting. It should be remembered
that the AN/UYS-2 Arithmetic Processors are 16 bit machines, and some of the
formatting is based on this. A natural question arises when porting to a 32 bit (or 64
bit) machine. How should the data be packed? If the display is being replaced, the
formatting will likely change and this should be considered as part of the conversion.
Additionally, some AN/UYS-2 applications such as DICASS store data in the ISC
memory for reprocessing. If the ISC is not being used in the new target platform, this
data will have to be stored in a different place, possibly in memory located on the
target platform. Finally, since the Command Program is not readily reusable, should
the data from the Command Program be kept in the same format?

DICASS output is passed to tracking processing. The tracking processing, including
the AIU graph which distributes the feedback parameters, was not converted.

In addition to the modifications discussed in Section 6.2 Converting AN/UYS-2
Graphs, the following modifications were made:

1. Converted all families of Graph Instantiation Parameters (GIPs) into GIP arrays. In
all cases, the members of the family were single integers, therefore the conversion
was straightforward.

Example:
Declaration: %GIP([1..2]ZTHR : INT

INITIALIZE [1]ZTHR TO RYA
INITIALIZE [2}ZTHR TO NPADN)

becomes:
%GIP(ZTHR : INT ARRAY(2) INITIALZE TO {RYA, NPADN})

Usage: FAMILY[I=PADQ,ZPAD] THRESHOLD = [IJZTHR

becomes:
FAMILY[I=PADQ,ZPAD] THRESHOLD = ZTHR(I)

Management Communications & Control, Inc. 43 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

These types of conversion were necessary because the MCCI Autocoding Toolset
does not currently support GIP families.

2. Modified the graph as necessary to eliminate multi-element slicing of entities (GIPs
and VARs). This entailed changing the basic entity from a GIP or VAR to a queue and
specifying READ and OFFSET amounts.

%VAR(NOTCHW : FLOAT ARRAY(2,NFT) INITIALIZE TO {NFT OF 1.0E+00,
((NFT/2)-SBB)~3 OF 1.0E+00, 0.701201E+00, 0.242273E+00,
0.23472E-01, (2*SBB)+1 OF 0.0E+00, 0.23472E-01, 0.242273E+00,
0.701201E+00, ((NFT/2)-SBB)-4 OF 1.0E+00})

%QUEUE(NOTCHW : FLOAT INITIALIZE TO NFT OF 1.0E+00,
((NFT/2)-SBB)-3 OF 1.0E+00, 0.701201E+00, 0.242273E+00,
0.23472E-01, (2*SBB)+1 OF 0.0E+00, 0.23472E-01, 0.242273E+00,
0.701201E+00, ((NFT/2)-SBB)-4 OF 1.0E+00)

%NODE(SLICEl
PRIMITIVE = D_REP
PIP_IN = AREVERB,

SLICE_TRIG THRESHOLD = 1
PRIM_IN = NFT,

1,
NOTCHW THRESHOLD = 2*NFT

READ = NFT
VARIABLE OFFSET = (AREVERB-1)*NFT
CONSUME = 0

PRIM_OUT = FAMILY[NOTCHW_VAR]
PIP OUT = NOTCH TRIG PRODUCE = 1 OF 1

For those few cases where the entity was used by more than one node, an additional
node was inserted into the graph that performed an offset read from the queue and
placed the data into a VAR.

%NODE(AWQ2VAR
PRIMITIVE = D_REP
PRIM_IN = UNUSED,
1,
AW

THRESHOLD = (4*19)*5
READ = 19*5
VARIABLE OFFSET = ((SONF-1)*19)*5
CONSUME = 0

PRIM_OUT = FAMILY[AW_VAR]
)

In order to execute these nodes only at graph start and graph re-initialization, a trigger
queue input to the node as a PIPJN was used to control when the node(s) was ready
for execution. Further, one or more trigger queues were incorporated as outputs from
the node (as a PIP_OUT) and input to the node requiring the VAR to ensure that the
VAR was initialized correctly prior to use by another node.

Management Communications & Control, Inc. 44 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

This type of conversion was necessary because the MCCI Autocoding Toolset and
data flow graph executing SRTS do not currently support slicing.

There were some minor edits where the AN/UYS-2 graph was passing an array or a
single element of the array as a parameter to a node. These edits were of the form:

FOO(1..2,1..N) => FOO %% entire array being passed.
FOO(1..1) => FOOorFOO(1) %% either entire array or single

element passed.
BB(expr) => expr %% BB contained values equal

to index.

6.4.2 Domain Primitives
The Domain Primitives that were implemented for DICASS are:

DCP_CGA - Channel Gain Adjust
DCP_CLS - DICASS Clustering
DCP_CRB - Center Reverberation Bin Estimation
DCPJNTD - Interpolation - Decimation
DCPJ-AGI - Weighted Lag Integration
DCP_RINT - Running Integration
DFCJHDI - Header Insert
DFC_MCS - Mode Change Synchronization
DFC_PACK - Data Bit Pack
DFC_REQ - Requantization
DFC_VSCT - V_Array Selective Concatentation
DGPJHFMG - Hyperbolic FM Generation
SSP_AGC - Automatic Gain Control
SSP_CARD - Cardioid Formation
SSP_DCD - DIFAR Coherent Detection
SSP_SYNO - Synthetic Omni and Bearing Formation
SSP_ZDT - Zero Detection
VCM_DTH - DICASS Thresholding

The following Q003 Primitives are used in DICASS but were not implemented.

DMC_FXFL - Fixed to Float conversion. Data from ISC is FIXED with scale of 0.
This is same as integer. Used integer to float conversion.

DFC_VPACK - Used VSCT instead.

Additionally, a (preliminary) version of MERGE was implemented.

Some of the Domain Primitives that were implemented are complex due to the
generalized nature of the primitive. Mode Change Synchronization is an example.
This primitive is used to ensure that graph variables updated by the Command
Program occur at essentially the same time. The primitive permits different sizes of
families for each of the five outputs and any output can be unused. In hindsight, some

Management Communications & Control, Inc. 45 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

of these primitives should have been implemented in a simpler fashion without being
concerned with completely implementing all of the generalized functionality of the
Q003 version.

6.4.3 Chains
The ASNP chain was converted into a subgraph using the conversion procedure
described in Section 6.3 AN/UYS-2 Chains.

The BDWF chain was converted into five subgraphs using the conversion procedure
described in Section 6.3 AN/UYS-2 Chains. Each mode of operation was
implemented as a separate subgraph, and each referenced a common subgraph
which implemented the tail-end processing.

6.4.4 Partitioning
The partitioning scheme implemented was based solely on partitioning requirements
of the Autocoding Toolset. The restrictions imposed by the Toolset are that variable
reads, variable consumes, and variable writes can only occur on queues that cross
partition boundaries. "Variable" valves can only occur on partition output queues;
however, by changing a "variable" valve to a valve and including the parameter values
in the Graph Value Set, this can be encapsulated inside a partition at the expense of
increased code size. The Merge construct must be in a partition by itself.

Based on these rules, certain Domain Primitives essentially force partition boundaries.
However, in many cases, the complete flexibility of this type of Domain Primitive is not
required. By using a Domain Primitive that performs the desired operation but does
not have the flexibility, a partition boundary requirement may be eliminated. An
example is using D_CAT instead of D_FANIN. D_FANIN permits run-time variation of
how the data is concatenated, but in this mode requires that the output queue be an
output from the partition. D_CAT also concatenates data, but without the run-time
variation. In this demonstration, no effort was made to eliminate partition boundaries.
This may or may not be possible for the DICASS application.

The partitioning performed for this demonstration resulted in 142 partitions.

The iconic form of one partition, P_CWSIN_4, is shown in Figure 10.

Management Communications & Control, Inc. 46 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

S_CW5 P_ S_CWIN_ S_ EWQ

S_C W5 P_ 5_CWIN[_ 5_ß P E W D_C
5P_SJ

S_CWSP

St.ewsp_ S_CWIN_ SJEWB s

D.FIR1!
IS CVVSP 5
1 — — i

S_CWS P_ S_C WIM. S_ EW12

DLFIR1S
5L.CW5P

S_CW5P_5_CWIN_5_EWPQ

. 5_CWS P_S^CWIhC S_ EWRT
DLREP

^CWSP_

[
[S_CWSP_

LCWSP_

S_CWSP_

5_CW5P_

S_CWSP_

5_CWSP_

5_CWSP_

S_CWSP_

s_e ws P_S_;C WiiC s_ PGQ

5_CW5P_ 5_CWIK_ S_ EWCT

CW5P

5_CW5 P_ 5_CWIM. 5_ EWC S

Figure 10. Partition P_CWSIN_4

Management Communications & Control, Inc. 47 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

The notational form of the same partition is:

%GRAPH (P_CWSIN_4
INPUTQ = S_CWSP_S_CWIN_S_EWQ : FLOAT
OUTPUTQ = S_SC10 : INT,

S_CWSP_S_CWIN_S_EWCS : INT,
S_CWSP_S_CWIN_S_EWRT : CFLOAT,
[1..3]GATHERED_OUTPUT_l : CFLOAT)

%GIP (S_CWSP_S_NF : INT
INITIALIZE S_CWSP_S_NF TO 20)

%GIP (S_CWSP_S_CWIN_S_F : FLOAT ARRAY(1)
INITIALIZE S_CWSP_S_CWIN_S_F TO {2.44140600000000E-01})

%GIP (S_CWSP_S_CWIN_S_FIRSZ1 : INT
INITIALIZE S_CWSP_S_CWIN_S_FIRSZ1 TO 11)

%GIP (S_CWSP_S_CWIN_S_FIR1 : FLOAT ARRAY (S_CWSP_S_CWIN_S_FIRSZ1)
INITIALIZE S_CWSP_S_CWIN_S_FIR1 TO {9.87871740000000E-03,
-4.20027990000000E-04, -5.85211180000000E-02, 1.07341250000000E-03,
2.98794630000000E-01, 4.98531370000000E-01, 2.98794630000000E-01,
1.07341250000000E-03, -5.85211180000000E-02, -4.20027990000000E-04,
9.87871740000000E-03})

%GIP (S_CWSP_S_CWIN_S_FIRSZ2 : INT
INITIALIZE S_CWSP_S_CWIN_S_FIRSZ2 TO 39)

%GIP (S_CWSP_S_CWIN_S_FIR2 : FLOAT ARRAY(S_CWSP_S_CWIN_S_FIRSZ2)
INITIALIZE S_CWSP_S_CWIN_S_FIR2 TO {-1.23575920000000E-03,
8.70276560000000E-05, 2.53144400000000E-03, -7.23021220000000E-05,
-4.79434850000000E-03, 1.93636250000000E-04, 8.44822920000000E-03,
-2.12764510000000E-04, -1.37729710000000E-02, 3.47536320000000E-04,
2.18234450000000E-02, -3.78957080000000E-04, -3.40838430000000E-02,
5.03258610000000E-04, 5.51007170000000E-02, -5.15613120000000E-04,
-1.00731690000000E-01, 6.01775770000000E-04, 3.16516400000000E-01,
4.99431310000000E-01, 3.16516400000000E-01, 6.01775770000000E-04,
-1.00731690000000E-01, -5.15613120000000E-04, 5.51007170000000E-02,
5.03258610000000E-04, -3.40838430000000E-02, -3.78957080000000E-04,
2.18234450000000E-02, 3.47536320000000E-04, -1.37729710000000E-02,
-2.12764510000000E-04, 8.44822920000000E-03, 1.93636250000000E-04,
-4.79434850000000E-03, -7.23021220000000E-05, 2.53144400000000E-03,
8.70276560000000E-05, -1.23575920000000E-03})

%GIP (S_CWSP_S_CWIN_S_FS2 : FLOAT
INITIALIZE S_CWSP_S_CWIN_S_FS2 TO 1.00000000000000E+00)

%GIP (S_CWSP_S_CWIN_S_NX : INT
INITIALIZE S_CWSP_S_CWIN_S_NX TO (S_CWSP_S_NF * S_CWSP_S_NF))

%GIP (S_CWSP_S_CWIN_S_ISZ : INT
INITIALIZE S_CWSP_S_CWIN_S_ISZ TO (4 * S_CWSP_S_CWIN_S_NX))

%QUEUE (S_CWSP_S_CWIN_S_EW12 : CFLOAT
INITIALIZE S_CWSP_S_CWIN_S_EW12 TO ((S_CWSP_S_CWIN_S_FIRSZ2 - 2) * 3) OF <
0.00000000000000E+00, O.OO00000000OOOOE+00>)

%QUEUE (S_CWSP_S_CWIN_S_EWBS : CFLOAT
INITIALIZE S_CWSP_S_CWIN_S_EWBS TO ((S_CWSP_S_CWIN_S_FIRSZ1 - 2) * 3) OF <
0.00000000000000E+00, 0.00000000000000E+00>)

%QUEUE (S_CWSP_S_CWIN_S_EWCT : INT
INITIALIZE S_CWSP_S_CWIN_S_EWCT TO 1 OF 0)

%QUEUE (S_CWSP_S_CWIN_S_EWFQ : CFLOAT)
%QUEUE (S_CWSP_S_CWIN_S_NPEW : INT

INITIALIZE S_CWSP_S_CWIN_S_NPEW TO 1 OF 0)
%QUEUE (S_CWSP_S_CWIN_S_PGQ : CFLOAT)

%NODE (S_CWSP_S_CWIN_S_BSHF

Management Communications & Control, Inc. 48 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIMITIVE = D_CDMV
PRIM_IN =

S_CWSP_S_CWIN_S_ISZ,
3,
UNUSED,
1024,
S_CWSP_S_CWIN_S_F,
S_CWSP_S_CWIN_S_FS2,
S_CWSP_S_CWIN_S_NPEW

THRESHOLD = 1,
S_CWSP_S_CWIN_S_EWQ

THRESHOLD = (S_CWSP_S_CWIN_S_ISZ * 3)
PRIM_OUT =

S_CWSP_S_CWIN_S_EWBS,
S_CWSP_S_CWIN_S_NPEW)

%NODE (S_CWSP_S_CWIN_S_FD1
PRIMITIVE = D_FIR1S
PRIM_IN =

((S_CWSP_S_CWIN_S_ISZ + S_CWSP_S_CWIN_S_FIRSZ1) -2),
3,
S_CWSP_S_CWIN_S_FIRSZ1,
2,
S_CWSP_S_CWIN_S_FIR1,
S_CWSP_S_CWIN_S_EWBS

THRESHOLD = (((S_CWSP_S_CWIN_S_ISZ + S_CWSP_S_CWIN_S_FIRSZ1) - 2) *3)
READ = (((S_CWSP_S_CWIN_S_ISZ + S_CWSP_S_CWIN_S_FIRSZl) - 2) * 3)
CONSUME = (S_CWSP_S_CWIN_S_ISZ * 3)

PRIM_OUT = S_CWSP_S_CWIN_S_EW12)
%NODE (S_CWSP_S_CWIN_S_FD2

PRIMITIVE = D_FIR1S
PRIM_IN =

(((S_CWSP_S_CWIN_S_ISZ / 2) + S_CWSP_S_CWIN_S_FIRSZ2) - 2),
3,
S_CWSP_S_CWIN_S_FIRSZ2,
2,
S_CWSP_S_CWIN_S_FIR2,
S_CWSP_S_CWIN_S_EW12

THRESHOLD = ((((S_CWSP_S_CWIN_S_ISZ / 2) + S_CWSP_S_CWIN_S_FIRSZ2) -
2) * 3)
READ = ((((S_CWSP_S_CWIN_S_ISZ / 2) + S_CWSP_S_CWIN_S_FIRSZ2) - 2) *3)
CONSUME = ((S_CWSP_S_CWIN_S_ISZ / 2) * 3)

PRIM_OUT = S_CWSP_S_CWIN_S_EWFQ)
%NODE (S_CWSP_S_CWIN_S_EWR

PRIMITIVE = D_REP
PRIM_IN =

(S_CWSP_S_CWIN_S_NX * 3) ,
2,
S_CWSP_S_CWIN_S_EWFQ

THRESHOLD = (S_CWSP_S_CWIN_S_NX * 3)
PRIM_OUT = FAMILY [S_CWSP_S_CWIN_S_EWRT, S_CWSP_S_CWIN_S_PGQ])

%NODE (S_CWSP_S_CWIN_S_DMXP
PRIMITIVE = D_DMUX
PIP_IN = S_CWSP_S_CWIN_S_EWCT

THRESHOLD = 1
PRIM_IN =

S_CWSP_S_NF,
3,
S_CWSP_S_CWIN_S_PGQ

THRESHOLD = (S_CWSP_S_CWIN_S_NX * 3)
PRIM_OUT = [1..3]GATHERED_OUTPUT_l

Management Communications & Control, Inc. 49 SB1R Phase 1 Final Technical Report
N68335-98-C-0140

PIP_OUT =
S_CWSP_S_CWIN_S_EWCT

VARIABLE PRODUCE = (S_CWSP_S_CWIN_S_EWCT + S_CWSP_S_CWIN_S_NX),
S_SC10

VARIABLE PRODUCE = (S_CWSP_S_CWIN_S_EWCT + S_CWSP_S_CWIN_S_NX),
S_CWSP_S_CWIN_S_EWCS

PRODUCE = 1 OF 1
)

%ENDGRAPH

The Graph Value Set for the partition is empty:

%GV_SET
%END_SET

The autocoded source code for the mpid that implements the partition is:

/* File: p_cwsin_4.c */
/* Generated by the MCCI MPID Autocode Generator - Version: 0.9 */
/* On 10/26/98, at 20:36:52 */
/* target: MERCURY_PPC options: immed-write/N probe/N sid/N */
/***

/* Library */
♦include "rts_sys.h"

/* Static Run-Time System Header File */
♦include "srtshdrs.h"

/* Autocoded MPID Files */
♦include "p_cwsin_4.constants.h"
♦include "p_cwsin_4.in_neps.h"
♦include "p_cwsin_4.mpid_data_type.h"
♦include "p_cwsin_4.h"

void p_cwsin_4 (
Persistent_Data_Type *mpid_data,
Rts_Handle_Type rts_handle,
int s_cwsp_s_cwin_s_ewq,
int s_sclo,
int s_cwsp_s_cwin_s_ewcs,
int s_cwsp_s_cwin_s_ewrt,
int gathered_output_l

)
{

char *s_cwsp_s_cwin_s_ewq_data_ptr [
S_CWSP_S_CWIN_S_EWQ_MAX_FAMILY_SIZE];
char *s_sclo_storage_ptrs [S_SC10_MAX_FAMILY_SIZE] ;
int - s_sclo_jproduce_amount;
char *s_cwsp_s_cwin_s_ewcs_storage_ptrs [
S_CWSP_S_CWIN_S_EWCS_MAX_FAMILY_SIZE];
int s_cwsp_s_cwin_s_ewcsjproduce_amount;
char *s_cwsp_s_cwin_s_ewrt_storage_ptrs [
S_CWSP_S_CWIN_S_EWRT_MAX_FAMILY_SIZE];
int s_cwsp_s_cwin_s_ewr t_j?roduce_amount ;

Management Communications & Control, Inc. 50 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

char *gathered_output_l_storage_ptrs [
GATHERED_0UTPUT_1_MAX_FAMILY_SIZE];
int gathered_output_l_produce_amount [
GATHERED_0UTPUT_1_MAX_FAMILY_SIZE];
int s_cwsp_s_nf;
float s_cwsp_s_cwin_s_f [1] ;
int s_cwsp_s_cwin_s_firszl;
float s_cwsp_s_cwin_s_firl [11];
int s_cwsp_s_cwin_s_f i r s z 2 ;
float s_cwsp_s_cwin_s_fir2 [39];
float s_cwsp_s_cwin_s_fs2;
int s_cwsp_s_cwin_s_nx;
int s_cwsp_s_cwin_s_i s z;
int il_pl_aasize;
float il_pl_afi;
float iljol_afr;
int il_pl_bsoffset;
int il_pl_bsstep;
float il_pl_fdelta;
float il_pl_ffs;
float il_pl_fm;
float il_pl_fone;
float i l_pl_f round;
float il_pl_fzero;
int ilj?l_mvalue;
float il_pl_xf;
int il_pl_xmode;
int il_p5_xamt;
int il_p5_ykmax;
int il_p5_yvsize;
int index_mx; /* Loop Parameter */
int index_n; /* Loop Parameter */
int index_a; /* Loop Parameter */
int index_ne; /* Loop Parameter */

s_cwsp_s_nf = 20;
s_cwsp_s_cwin_s_f[0] = 2.44140600000000E-01;
s_cwsp_s_cwin_s_firszl = 11;
s_cwsp_s_cwin_s_firl[0] = 9.87871740000000E-03;
s_cwsp_s_cwin_s_firl[l] = - 4.20027990000000E-04;
s_cwsp_s_cwin_s_firl[2] = - 5.85211180000000E-02;
s_cwsp_s_cwin_s_firl[3] = 1.07341250000000E-03
s_cwsp_s_cwin_s_firl[4] = 2.98794630000000E-01
s_cwsp_s_cwin_s_firl[5] = 4.98531370000000E-01
s_cwsp_s_cwin_s_firl[6] = 2.98794630000000E-01
s_cwsp_s_cwin_s_firl[7] = 1.07341250000000E-03
s_cwsp_s_cwin_s_firl[8] = - 5.85211180000000E-02;
s_cwsp_s_cwin_s_firl[9] = - 4.20027990000000E-04;
s_cwsp_s_cwin_s_firl[10] = 9.87871740000000E-03;
s_cwsp_s_cwin_s_firsz2 = 39;
s_cwsp_s_cwin_s_fir2[0] = - 1.23575920000000E-03;
s_cwsp_s_cwin_s_fir2[l] = 8.70276560000000E-05;
s_cwsp_s_cwin_s_fir2[2] = 2.53144400000000E-03;
s_cwsp_s_cwin_s_fir2[3] = - 7.23021220000000E-05;
s_cwsp_s_cwin_s_fir2[4] = - 4.79434850000000E-03;
s_cwsp_s_cwin_s_fir2[5] = 1.93636250000000E-04;
s_cwsp_s_cwin_s_fir2[6] = 8.44822920000000E-03;
s_cwsp_s_cwin_s_fir2[7] = - 2.12764510000000E-04;
s_cwsp_s_cwin_s_fir2[8] = - 1.37729710000000E-02;
s_cwsp_s_cwin_s_fir2[9] = 3.47536320000000E-04

Management Communications & Control, Inc. 51 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

s_cwsp_s_cwin_s_f ir2 [10]
s_cwsp_s_cwin_s_fir2 [11]
s_cwsp_s_cwin_s_f ir2 [12]
s_cwsp_s_cwin_s_fir2 [13]
s_cwsp_s_cwin_s_f ir2 [14]
s_cwsp_s_cwin_s_fir2 [15]
s_cwsp_s_cwin_s_fir2 [16]
s_cwsp_s_cwin_s_fir2 [17]
s_cwsp_s_cwin_s_f ir2 [18]
s_cwsp_s_cwin_s_f ir2 [19]
s_cwsp_s_cwin_s_fir2 [20]
s_cwsp_s_cwin_s_fir2 [21]
s_cwsp_s_cwin_s_fir2 [22]
s_cwsp_s_cwin_s_fir2 [23]
s_cwsp_s_cwin_s_fir2 [24]
s_cwsp_s_cwin_s_fir2 [25]
s_cwsp_s_cwin_s_fir2 [26]
s_cwsp_s_cwin_s_fir2 [27]
s_cwsp_s_cwin_s_fir2 [28]
s_cwsp_s_cwin_s_fir2 [29]
s_cwsp_s_cwin_s_fir2 [30]
s_cwsp_s_cwin_s_fir2 [31]
s_cwsp_s_cwin_s_fir2 [32]
s_cwsp_s_cwin_s_fir2 [33]
s_cwsp_s_cwin_s_fir2 [34]
s_cwsp_s_cwin_s_fir2 [35]
s_cwsp_s_cwin_s_fir2 [36]
s_cwsp_s_cwin_s_fir2 [37]
s_cwsp_s_cwin_s_fir2 [38]

= 1

= 2

2.18234450000000E-02;
- 3.78957080000000E-04;
- 3.40838430000000E-02;
5.03258610000000E-04;
5.51007170000000E-02;
- 5.15613120000000E-04;
- 1.00731690000000E-01;
6.01775770000000E-04;
3.16516400000000E-01;
4.99431310000000E-01;
3.16516400000000E-01;
6.01775770000000E-04;
- 1.00731690000000E-01;
- 5.15613120000000E-04;
5.51007170000000E-02;
5.03258610000000E-04;
- 3.40838430000000E-02;
- 3.78957080000000E-04;
2.18234450000000E-02;
3.47536320000000E-04;
- 1.37729710000000E-02;
- 2.12764510000000E-04;
8.44822920000000E-03;

93636250000000E-04;
4.79434850000000E-03;
7.23021220000000E-05;
53144400000000E-03;

8.70276560000000E-05;
- 1.23575920000000E-03;

s_cwsp_s_cwin_s_fs2 = 1.00000000000000E+00;
s_cwsp_s_cwin_s_nx = 400;
s_cwsp_s_cwin_s_isz = 1600;
read_queue_srts (

s_cwsp_s_cwin_s_ewq,
s_cwsp_s_cwin_s_ewq_read_amount[mpid_data->state] [0],
s_cwsp_s_cwin_s_ewq_offset_amount [mpid_data->state] [0],
&s_cwsp_s_cwin_s_ewq_data_ptr [0],
rts_handle
);

il_pl_fone = 1.00000000000000E+00;
il_pl_fround = 5.00000000000000E-01;
il_pl_fzero = 0.00000000000000E+00;
il_pl_mvalue = 1024;
vfilli (

&mpid_data->persistent_area[58712],
&mpid_data->scratch_area[8256],
1,
3
);

il_pl_xmode =1;
memcpy_mcci (

&mpid_data->scratch_area[8224],
1,
& s_cwsp_s_cwin_s_f,
1,
4,
1
);

vfill (
&mpid_data->scratch_area[8224],

Management Communications & Control, Inc. 52 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

&mpid_data->scratch_area[8224] + 4,
1,
2
);

il_pl_ffs = l.OOOOOOOOOOOOOOE+00;
to_float_mcci (

&il_pl_mvalue,
dint,
0,
&il_pl_fm,
0
);

il_pl_fdelta = -6.28318530720000E+00 / il_pl_fm;
il_pl_aasize = 8;
vramp (

&il_pl_fzero,
&ilj>l_fdelta,
&mpid_data->scratch_area[0],
2,
il_pl_mvalue
);

cvexp (
&mpid_data->scratch_area[0],
2,
&mpid_data->scratch_area[0],
2,
il_pl_mvalue
);

vabs (
&mpid_data->scratch_area[8224],
1,
&mpid_data->scratch_area[8208],
1,
3
);

lveq (
&mpid_data->scratch_area[8224],
1,
&mpid_data->scratch_area[8208],
1,
&mpid_data->scratch_area[8272],
1,
3
);

vlim (
&mpid_data->scratch_area[8272],
1,
&il_pl_fone,
&il_pl_fone,
&mpid_data->scratch_area[8272],
1,
3
);

vsmul (
&mpid_data->scratch_area[8208],
1,
&il_pl_fm,
&mpid_data->scratch_area[8208],
1,
3

Management Communications & Control, Inc. 53 SBIR Phase 1 Final Technical Report
N68335--98-C-0140

);
vsdiv (

&mpid_data->scratch_area[8208],
1,
&ilj>l_ffs,
&mpid_data->scratch_area[8208],
1,
3
);

vsadd (
&mpid_data->scratch_area[8208],
1,
&il_pl_f round,
&mpid_data->scratch_area[8208],
1,
3
);

vmul (
&mpid_data->scratch_area[8208],
1,
&mpid_data->scratch_area[8272],
1,
&mpid_data->scratch_area[8208],
1,
3
);

vfix32 (
&mpid_data->scratch_area[8208],
1,
&mpid_data->scratch_area[8240],
1,
3
);

memcpy_mcci (
&il_pl_f delta,
1,
&mpid_data->scratch_area[8224],
1,
4,
1
);

if ((is_equal_mcci (il_pl_fdelta, 0.00000000000000E+00)))
{

/* Error recovery NOT implemented (as of 8.7.95). */
/* BEGIN removed message...
S_CWSP_S_CWIN_S_F must not be 0
...END removed message */

}
else

if ((is_greaterthan_mcci (il_pl_fdelta, il_pl_ffs)))
{

/* Error recovery NOT implemented (as of 8.7.95). */
/* BEGIN removed message...
S_CWSP_S_CWIN_S_F greater than sampling frequency
...END removed message */

}
memcpy_mcci (

& il_pl_xmode,
1,
&mpid_data->scratch_area[8256],

Management Communications & Control, Inc. 54 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

1,
4,
1
);

if (((il_pl_xmode < 0) || (iljpl_xmode >= il_pl_mvalue)))
{

/* Error recovery NOT implemented (as of 8.7.95). */
/* BEGIN removed message...
Bandshift table pointer is out of range
...END removed message */

}
vsmuli (

&mpid_data->scratch_area[8256],
1,
&iljpl_aasize,
&mpid_data->scratch_area[8192],
1,
3
);

for (index_mx = 0; index jnx <= 2; index_mx++)
{

memcpy_mcci (
&il_pl_bsoffset,
1,
&mpid_data->scratch_area[8192] + indexjnx * 4,
1,
4,
1
);

memcpy_mcci (
&il_pl_bsstep,
1,
&mpid_data->scratch_area[8240] + indexjnx * 4,
1,
4,
1
);

for (index_n = 0; index_n <= 1599; index_n++)
{

memcpy_mcci (
&ilj?l_xf,
1,
s_cwsp_s_cwin_s_ewq_data_ptr [0] + 4 * (index_n * 3 + indexjnx) +
0 * index ji * 4,
1,
4,
1
);

memcpyjncci (
Siljpljäfr,
1,
&mpidjiata->scratchjdrea[0] + iljpl_bsoffset,
1,
4,
1
);

memcpyjncci (
&iljpljifi,
1,
&mpid_data->scratchjirea[0] + iljpl_bsoffset + 4,

Management Communications & Control, Inc. 55 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

1,
4,
1
);

il_j?l_afr = il_pl_afr * il_j?l_xf;
il_pl_afi = il_pl_afi * il_pl_xf;
memcpy_mcci (

&mpid_data->persistent_area[20304] + (index_n * 3 + index_mx) *
ilj?l_aasize,
1,
&il_pl_afr,
1,
4,
1
);

memcpy_mcci (
&mpid_data->persistent_area[20304] + (index_n * 3 + index_mx) *
il_pl_aasize + 4,
1,
&il_pl_afi,
1,
4,
1
);

il_pl_bsoffset = ilj?l_bsoffset + il^pl_aasize * il_pl_bsstep;
if ((il_pl_bsoffset >= il_pl_mvalue * il_j?l_aasize))
{

il_pl_bsoffset = il_pl_bsoffset - il_pl_mvalue * il_pl_aasize;
}
else
{

if (il_pl_bsoffset < 0)
{

il_pl_bsoffset = il_pl_bsoffset + il_pl_mvalue * iljpl_aasize;
}

}
}
memcpy_mcci (

&il_pl_bsoffset,
1,
&mpid_data->scratch_area[8256] + index_mx * 4,
1,
4,
1
);

if ((ilj>l_bsstep > 0))
{

ilj>l_bsoffset = il_pl_bsoffset + 1600 * il_pl_bsstep;
while ((il_j?l_bsoffset >= il_pl_mvalue))
{

il_pl_bsoffset = il_pl_bsoffset - il_pl_mvalue;
}

}
else
{

ilj>l_bsoffset = il_pl_bsoffset + 1600 * il_pl_bsstep;
while ((il_pl_bsoffset < 0))
{

il_pl_bsoffset = ilj?l_bsoffset + il_pl_mvalue;
}

Management Communications & Control, Inc. 56 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

}
memcpy_mcci (

&mpid_data->scratch_area[8256] + index_mx * 4,
1,
&il_pl_bsoffset,
1,
4,
1
);

}
vmovi (

&mpid_data->scratch_area[8256],
1,
&mpid_data->persistent_area[58716],
1,
1
);

vmov (
& s_cwsp_s_cwin_s_f ir 1,
1,
&mpid_data->scratch_area[0],
1,
11
);

for (index_mx =0; index_mx <= 2; index_mx++)
{

vsmul (
&mpid_data->persistent_area[20088] + index_mx * 8,
12,
&mpid_data->scratch_area[0] + 40,
&mpid_data->persistent_area[888] + index_mx * 8,
6,
800
);

vsmul (
&mpid_data->persistent_area[20088] + index_mx * 8 + 4,
12,
&mpid_data->scratch_area[0] + 40,
&mpid_data->persistent_area[888] + index_mx * 8 + 4,
6,
800
);

for (index_a =1; index_a <= 10; index_a++)
{

vma (
&mpid_data->persistent_area[20088] + (index_a * 3 + index_mx) * 8,

12,
&mpid_data->scratch_area[0] + (- index_a + 10) * 4,
0,
&mpid_data->persistent_area[888] + index_mx * 8,
6,
&mpid_data->persistent_area[888] + index_mx * 8,
6,
800
);

}
for (index_a =1; index_a <= 10; index_a++)
{

vma (

Management Communications & Control, Inc. 57 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

&mpid_data->persistent_area[20088] + (index_a * 3 + index_mx) * 8
+ 4,
12,
&mpid_data->scratch_area[0] + (- index_a + 10) * 4,
0,
&mpid_data->persistent_area[888] + index_mx * 8 + 4,
6,
&mpid_data->persistent_area[888] + index_mx * 8 + 4,
6,
800
);

}
}
vmov (

&s_cwsp_s_cwin_s_f ir2,
1,
&mpid_data->scratch_area[9600],
1,
39
);

for (index_mx = 0; index_mx <= 2; index_mx++)
{

vsmul (
&mpid_data->persistent_area[0] + index_mx * 8,
12,
&mpid_data->scratch_area[9600] + 152,
&mpid_data->scratch_area[0] + index_mx * 8,
6,
400
);

vsmul (
&mpid_data->persistent_area[0] + index_mx * 8 + 4,
12,
&mpid_data->scratch_area[9600] + 152,
&mpid_data->scratch_area[0] + index_mx * 8 + 4,
6,
400
);

for (index_a = 1; index_a <= 38; index_a++)
{

vma (
&mpid_data->persistent_area[0] + (index_a * 3 + index_mx) * 8,
12,
&mpid_data->scratch_area[9600] + (- index_a + 38) * 4,
0,
&mpid_data->scratch_area[0] + index_mx * 8,
6,
&mpid_data->scratch_area[0] + index_mx * 8,
6,
400
);

}
for (index_a = 1; index_a <= 38; index_a++)
{

vma (
&mpid_data->persistent_area[0] + (index_a * 3 + index_mx) * 8 + 4,

12,
&mpid_data->scratch_area[9600] + (- index_a + 38) * 4,
0,

Management Communications & Control, Inc. 58 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

&mpid_data->scratch_area[0] + index_mx * 8 + 4,
6,
&mpid_data->scratch_area[0] + index_mx * 8 + 4,
6,
400
);

}
}
cvmov (

&mpid_data->scratch_area[0],
2,
&mpid_data->scratch_area[48076],
2,
1200
);

il_p5_ykmax = 20;
il_p5_yvsize = 160;
for (index_ne = 0; index_ne <= 19; index_ne++)
{

il_p5_xamt = 20;
if ((20 > il_p5_ykmax))
{

il_p5_xamt = il_p5_ykmax;
}
cvmov (

&mpid_data->scratch_area[48076] + index_ne * 480,
6,
&mpid_data->scratch_area[16] + index_ne * il_jp5_yvsize,
2,
il_p5_xamt
);

if ((il_p5_xamt < 20))
{

vclr (
&mpid_data->scratch_area[16] + index_ne * il_p>5_yvsize +
il_p5_xamt * 8,
1,
(- il_p5_xamt +20) * 2
);

}
if ((index_ne == 0))
{
}
if ((il_p5_xamt > il_p5_ykmax))
{

ilj>5_xamt = iljp5_ykmax;
}
cvmov (

&mpid_data->scratch_area[48076] + index_ne * 480 + 8,
6,
&mpid_data->scratch_area[3216] + index_ne * il_p5_yvsize,
2,
il_p5_xamt
);

if ((il_p5_xamt < 20))
{

vclr (
&mpid_data->scratch_area[3216] + index_ne * il_p5_yvsize +
il_p5_xamt * 8,
1,

Management Communications & Control, Inc. 59 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

(- il_p5_xamt +20) * 2
);

}
if ((index_ne == 0))
{
}
if ((il_p5_xamt > il_p5_ykmax))
{

iljp5_xamt = iljp5_ykmax;
}
cvmov (

&mpid_data->scratch_area[48076] + index_ne * 480 + 16,
6,
&mpid_data->scratch_area[6416] + index_ne * il_p5_yvsize,
2,
il_p5_xamt
);

if ((il_p5_xamt < 20))
{

vclr (
&mpid_data->scratch_area[6416] + index_ne * il_jp5_yvsize +
il_p5_xamt * 8,
1,
(- ilj>5_xamt + 20) * 2
);

}
if ((index_ne == 0))
{
}

}
*((int *) &mpid_data->persistent_area[58708]) = *((int *)&mpid_data->
persistent_area[58704]) + s_cwsp_s_cwin_s_nx;
*((int *)&mpid_data->scratch_area[0]) = *((int *)&mpid_data->
persistent_area[58704]) + s_cwsp_s_cwin_s_nx;
*((int *)&mpid_data->scratch_area[8]) = 1;
copy_data_srts (

&mpid_data->persistent_area[19200],
&mpid_data->persistent_area[0],
888
);

copy_data_srts (
&mpid_data->persistent_area[58488],
&mpid_data->persistent_area[20088],
216
);

copy_data_srts (
&mpid_data->persistent_area[58708],
&mpid_data->persistent_area[58704],
4
);

copy_data_srts (
&mpid_data->persistent_area[58716],
&mpid_data->persistent_area[58712],
4
);

s_sclo_produce_amount = 1;
s_sclo_storage_ptrs[0] = &mpid_data->scratch_area[0];
write_queue_srts (

s_sclo,
s_sclo_produce_amount,

Management Communications & Control, Inc. 60 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

}

s_sclo_storage_j?trs [0],
0,
rts_handle
);

s_cwsp_s_cwin_s_ewcs_produce_amount = 1;
s_cwsp_s_cwin_s_ewcs_storage_ptrs [0] = &mpid_data->scratch_area [8] ;
write_queue_srts (

s_cwsp_s_cwin_s_ewcs,
s_cwsp_s_cwin_s_ewcs_produce_amount,
s_cwsp_s_cwin_s_ewcs_storagejptrs [0],
0,
rts_handle
);

s_cwsp_s_cwin_s_ewrt_produce_amount = 1200;
s_cwsp_s_cwin_s_ewrt_storagejotrs[0] = &mpid_data->scratch_area[48076];
write_queue_srts (

s_cwsp_s_cwin_s_ewr t,
s_cwsp_s_cwin_s_ewrt_produce_amount,
s_cwsp_s_cwin_s_ewrt_storage_j?trs [0],
0,
rts_handle
);

gathered_output_l_produce_amount[0] = 400;
gathered_output_l_produce_amount[1] = 400;
gathered_output_l_produce_amount[2] = 400;
gathered_output_l_storage_j?trs[0] = &mpid_data->scratch_area[16];
gathered_output_l_storage_jptrs [1] = &mpid_data->scratch_area[3216];
gathered_output_l_storage_j?trs [2] = &mpid_data->scratch_area[6416];
write_queue_family_srts (

gathered_output_l,
gathered_output_l_produce_amount,
gathered_output_l_storage_jptrs,
0,
rts_handle
);

consume_queue_srts (
s_cwsp_s_c wi n_s_e wq,
s_cwsp_s_cwin_s_ewq_consume_amount [mpid_data->state] [0],
rts_handle
);

void p_cwsin_4_reinit_local_info (
Persistent_Data_Type *mpid_data,
Rts_Handle_Type rts_handle

)
{

cfloat s_cwsp_s_cwin_s_ewl2_init_array;
cfloat s_cwsp_s_cwin_s_ewbs_init_array;
int s_cwsp_s_cwin_s_ewct_init_array;
int s_cwsp_s_cwin_s_npew_init_array;

mpid_data->state = TOP_OF_PERIOD;
if (mpid_data->persistent_area == SRTS_NULL)
{

mpid_data->persistent_area = (char *)SRTS_MEM_aligned_malloc (
SRTS_MEM_MPIDPRIVATE, 58720, 0, rts_handle);

}
if (mpid_data->scratch_area == SRTS_NULL)
{

Management Communications & Control, Inc. 61 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

}

mpid_data->scratch_area = (char *)SRTS_MEM_aligned_malloc (
SRTS_MEM_MPIDSCRATCH, 57676, 0, rts_handle);

}
s_cwsp_s_cwin_s_ewl2_init_array.real = 0.00000000000000E+00;
s_cwsp_s_cwin_s_ewl2_init_array.imag = 0.00000000000000E+00;
init_buff_srts (

&mpid_data->persistent_area[0],
(char *) &s_cwsp_s_cwin_s_ewl2_init_array,
sizeof (cfloat),
111
);

s_cwsp_s_cwin_s_ewbs_init_array.real = 0.00000000000000E+00;
s_cwsp_s_cwin_s_ewbs_init_array.imag = O.OOOOOOOOOOOOOOE+00;
init_buff_srts (

&mpid_data->persistent_area[20088],
(char *)&s_cwsp_s_cwin_s_ewbs_init_array,
sizeof (cfloat),
27
);

s_cwsp_s_cwin_s_ewct_init_array = 0;
init_buff_srts (

&mpid_data->persistent_area[58704],
(char *)&s_cwsp_s_cwin_s_ewct_init_array,
sizeof (int),
1
);

s_cwsp_s_cwin_s_npew_init_array = 0;
init_buff_srts (

&mpid_data->persistent_area[58712],
(char *)&s_cwsp_s_cwin_s_npew_init_array,
sizeof (int) ,
1
);

void p_cwsin_4_det_gv_set (
Persistent_Data_Type *mpid_data,
Rts_Handle_Type rts_handle

)
{

mpid_data->state = 1;
}

void *p_cwsin_4_cleanup (
void *argj>tr,
Rts_Handle_Type rts_handle

)
{

Persistent_Data_Type *mpid_data = (Persistent_Data_Type *)argj)tr;

if (mpid_data->persistent_area)
{

SRTS_MEM_free (
SRTS_MEM_MPIDPRIVATE,
mpid_data->persistent_area,
58720,
rts_handle
);

mpid_data->persistent_area = SRTS_NULL;
}

Management Communications & Control, Inc. 62 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

if (mpid_data->scratch_area)
{

SRTS_MEM_free (
SRTS_MEM_MPIDSCRATCH,
mpid_data->scratch_area,
57676,
rts_handle
);

mpid_data->scratch_area = SRTS_NULL;
}
return (

SRTS_NULL
);

}

The iconic form for each of the partitions is contained in Appendix D.

6.4.5 Testing
Complete testing of the converted graph was beyond the scope of this effort.
Additionally, test vectors were not available. However, some of the partitions were
individually tested. The following description is representative of the testing
performed.

Simulated sensor data set generated for the CWS mode is shown in Figures 11
through Figure 13. This data was then used in the MPID Test Environment to
individually exercise each autocoded partition. The output from the partition was used
as the input to the downstream partition. Values of GIPs and VARs required to execute
the mpid were entered into data files. A script file was constructed to execute the
graph by executing the partitions in a "control flow" order that was derived from the
data flow graph.

A modified version of the Equivalent Application Graph is shown in Figure 14. The
graph contains only those equivalent nodes (i.e., partitions) that are executed when
the CWS mode is being processed. The bolded lines in the figure indicate queues for
which plots of queue contents were captured and these plots are included as figures in
this document.

Management Communications & Control, Inc. 63 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 11. Simulated EW Sensor Data

Figure 12. Detail of Simulated EW Sensor Data

Management Communications & Control, Inc. 64 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

^ga&iÄ*»^.*

Figure 13. Simulated NS Sensor Data

Hiiiiiiiiiiiiiiiiiiiiiiiiiffliiiiwiiiiiwiiim

Figure 14. Simulated Omni Sensor Data

Management Communications & Control, Inc. 65 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

(0
JZ
Q. £
co O
i_

O 0)
■Ö

c o
o E
*J

CO «^
o o

a. t:
o (0

< Q.

4-1
C

(0
CO

o CD
CO
>

4-1
3

CO CO
(0 .c
<

+■•

o (A
CD

Q ■o
o

■o c
d>

«? 0)
w

"O o o
S *J

>>
n c

lO o
CO

CO

CD
i_
3
.5> c u. o o

•c o o
Q. •*
(LI
rr o ■

o co 1
ü CO
c O)
.c o in

CO
H CO

oo
CD CO
C Z
u.
T-

<D
W
(0
.C
0.
cn
m
CO

CD
CO

c

o
O
08
(0
c
g
TO
O
'c
E
E o
O
c
0
E
D)
CO c
CD

Representative data from one test set is shown in the following figures. Since actual
parameter values were not available, many parameters were set to either one or zero.
For other parameters either an educated or an uneducated guess was used.

The sensor data after basebanding and filtering is shown in Figures 16 through 18.

Figure 16. Data on Queue ZQ

Figure 17. Data on Queue NSMQ

Management Communications & Control, Inc. 67 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

üOu> -■"■■■ - ■ >"J

Figure 18. Data on Queue OMMQ

The following figures (19-32) show the contents of selected queues that connect
equivalent nodes.

Management Communications & Control, Inc. 68 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 19. Data on Queue SC1

""^^MÄu^S '3m \i.ii/M

P
"'nWiin V"' • ' •*3sia'y^SS^V'

ft .^.....
r«äfäte^V>3HS9£lf . .

Figure 20. Detail of Data on Queue SC1

Management Communications & Control, Inc. 69 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 21. Detail of Data on SC2 - Real, Imaginary, and Magnitude

Management Communications & Control, Inc. 70 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 22. Data on Queue CDCM

^H^^HBWIIlHHil "■' w?Etemert#.- .-.I ran
la«

•äDOOl

Figure 23. Data on Queue BRCC

Management Communications & Control, Inc. 71 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

t^.- .j, J fr. .»«..,.. ,1

Figure 24. Data on Queue BRCN

Figure 25. Data on Queue Nmean_FPSB

Management Communications & Control, Inc. 72 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

asii|^: Element #s|

Figure 26. Data on Queue Nmean_NMWF

Figure 27. Data on Queue Nmean_UNWF

Management Communications & Control, Inc. 73 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 28. Data on Queue Cmean_NMWF

!ü'~" "•' r'—r^^^j^i^^^

Figure 29. Data on Queue Audio_FLT

Management Communications & Control, Inc. 74 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 30. Data on Queue Waterfall_X10

■
H
-ä**-4^

^^SMCABIüDS^- ^WfcSJl
Figure 31. Data on Queue Ascan_X2

Management Communications & Control, Inc. 75 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 32. Data on Queue Ascan_X6

6.4.6 Graph Value Sets
The MCCI Autocoding Toolset performs partial instantiation of the graph at compile
time. The values permissible for certain integer variables (GIPs and VARs) must be
defined. Any parameter which affects the execution sequence and/or the memory map
must be defined in the Graph Value Set. For the DICASS graph, the following
parameters fall into this category:

PBINCF - total number of coarse and fine bins selected for output to AIU
LPB - CWL A-scan passband bin count
MPB - CWM A-scan passband bin count
SPB - CWS A-scan passband bin count

It is likely that these parameters could be eliminated from the Graph Value Set by
modifying sections of the graph to use queues of mode v_array. In that case, only the
maximum value of these parameters would have to be defined. This requires further
investigation to determine the validity of this approach. Workarounds for several other
parameters that initially were required to be in the Graph Value Set were found and
implemented.

Management Communications & Control, Inc. 76 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

6.4.7 Status
Partition graphs were generated successfully for the converted DICASS graph and
related subgraphs. All of the partitions were successfully autocoded with the following
exceptions:

The Mode Change Synchronization Domain Primitive (D_MCS) was not
implemented correctly due to a misinterpretation of the Q003 description. This
resulted in an inability to use the implemented version as required by the application.

The Channel Gain Adjust (CGA) processing was originally implemented as a
single subgraph, however each of the CW modes (CWL, CWM, and CWS) process a
different data amount. This processing either needs to be converted to encompass
queues of mode v_array, or else separate subgraphs need to be incorporated for each
of the modes that process a different data amount.

The Merge construct was implemented to process the same amount of data
from each member of the family of input queues. Some of the instantiations of Merge
require a different amount of data from each member. The Autocoding Toolset does
not currently support this capability.

The processing of the data for the displays using the VPACK primitive was not
correctly understood, and therefore the processing implemented using D_ VSCT is
believed to be incorrect.

D_PACK packs four four bit words into a 32 bit word, leaving the higher order
bits zeroed. This should be modified to pack 8 four bit words into the 32 bit word.

In generating the FM subreplicas, the starting bin for the output is selected via a
run-time expression. The current implementation of the FFT Domain Primitive does
not support this parameter as run-time variable. The FFT implementation needs to be
modified.

It is estimated that correcting these problems will require about a 0.75 personmonth
effort.

The requirements for the interface to the display were not reviewed, and therefore the
processing likely does not output the correct number of words.

An Input/output Procedure to generate simulated NS, EW and Omni signals was
constructed. Other Input/Output procedures were not implemented. No Command
Program was implemented.

6.4.8 Level of Effort
The level of effort required to perform each of the major functions associated with the
conversion of the DICASS graph is shown in Table 2.

Management Communications & Control, Inc. 77 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Task Hours
Domain Primitives 387.5
Convert Graph 33.0
Convert Chains 22.0
Partition/Autocode 17.0
Test Partitions 87.5
Total 547

Table 2. Level of Effort

6.4.9 Conclusions and Recommendations
The DICASS graph and related subgraphs were readily converted to Domain Primitive
Application Graphs. New Domain Primitives were implemented to encompass the
functionality required by DICASS that was not in the existing Domain Primitive set.
These new primitives are sonobuoy processing or display related.

A limitation of the current toolset is that there is no easy way to iconically designate
partitions, and further the viewing of graph - subgraph connections is not available
within DSPGRAPH. Each graph can be displayed individually, but simultaneous
viewing of several graphs becomes cumbersome for large graphs. Little effort was
made to create partitions that contained segments from different subgraphs. The
number of partitions could be decreased by this method.

When viewing the Equivalent Application Graph, an additional limitation of
DSPGRAPH is apparent. Partition Builder constructs node and queue names that are
long. It does this in order to ensure uniqueness of names. A byproduct of this naming
convention is that it is easy to trace back to the graph source of any entity. In order to
read the names, the scale factor must be high; however, to view a large graph, the
scale factor must be reduced.

Additionally, the automatic layout processing currently in DSPGRAPH is insufficient
for graph with large number of nodes, and/or with many queues that create a
"spiderweb."

The following actions are recommended to complete a meaningful demonstration of
DICASS processing on a COTS platform:

1. Correct the deficiencies identified under the Section "Status" above.

2. The DICASS graph used for conversion is of unknown origin and seemed to
contain some errors and modifications. The Merge construct was referenced with both
integer queues and integer array queues, yet only integer queues are permitted by the
PGM specification. Some queues were not attached at the head, others were not
attached at the tail and contained no initialization data. Therefore, before proceeding,

Management Communications & Control, Inc. 78 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

a known correct version of the graph should be obtained, and used as the baseline.
The modifications made should be implemented in this baseline.

3. Requirements for the display interfaced need to be reviewed, so that a thorough
understanding of the interface can be obtained.

4. The Command Program interface needs to be reviewed and representative values
for parameters identified, such that representative data sets can be generated.

5. Test vectors are required to test the converted graph. These data sets need to
reflect the parameter values of item 4.

6. The converted graph should be embedded into a system that contains the display
so that proper operation can be observed.

7. ILS Strategy
The architecture family MCCI proposes will support development of a COTS friendly
ILS strategy. A board replacement maintenance strategy will be a fact of life for the
majority of military system lifetimes. Replacement boards will use new technology and
perhaps a new architecture. MCCI's architecture family concept will facilitate the
introduction of new technology replacement boards without the attendant major
software rewrites that would otherwise be necessary. Application reuse in hybrid new
and old technology systems will be supported. An ILS strategy that integrates life
cycle software support with board replacement logistics support will be supportable.

7.1 Board Replacement ILS Strategy
The architecture family will support a board replacement maintenance strategy.
Introduction of a new technology generation into a vendor's product line usually
involves an operating system upgrade. Operating system upgrades may support older
technology generations for some period; e.g., Mercury Computer Systems, Inc.'s
MCOS support of i860, Power PC, and SHARC based boards. The Autocoding
Toolset's middleware level interfaces to operating systems will make any
dependencies on operating system upgrades transparent to the maintainers. New
technology boards may replace older boards without expensive software rewrite. It
may be necessary, or expedient, to reassign tasks and threads to accommodate or
take advantage of the new technology. This can be readily accomplished by re-
autocoding the application with different partitioning directives. This is analogous to a
recompile.

7.2 Board and Vendor Migration
At some point in airborne system life cycle, vendor support for older technology boards
will inevitably be dropped. At that point, replacement of older, non-supported boards
will be required. MCCI will continue to support boards as long as they are fielded.
Transitioning board sets to new technology boards may be made a part of regularly
scheduled major maintenance actions. Board replacement within older supported
sets will serve maintenance needs in the interim. Again, no major application software

Management Communications & Control, Inc. 79 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

rewrite will be necessary to transition to new technology boards. All target specific
modifications are encapsulated within the Autocoding Toolset and the corresponding
run-time services. Transition to new technology board sets will also provide a natural
opportunity to change board vendors. It is entirely possible that boards from multiple
vendors will be used within the fleet. At the time a board set is replaced, it may be
convenient to replace it with a set from an alternative vendor. Again, this may be
undertaken without expensive software rewrite.

7.3 Incorporation of Performance Upgrades with Board Replacement
We have emphasized the minimal impact of board and vendor upgrades on software;
however, it may be advantageous to use the additional capacity new technology
boards will likely provide by introducing processing upgrades. Existing applications
may be incrementally upgraded without major disruption of existing code. Additional
channels may be added, new processes introduced, etc. These modifications can be
easily integrated into the existing application. Repartitioning may be accomplished to
best utilize the increased capacity without change to the existing application DPAGs.
New application configurations with upgrades incorporated may then be provided in
support of opportunistic or scheduled maintenance actions. Incremental upgrade of
processing capacity may be made an ongoing activity and integrated into
maintenance support to minimize impact on system availability.

Management Communications & Control, Inc. 80 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Appendix A - Description of Chain CHN_ASNP

Portable Reusable Application Software
SBIR Phase I Final Report

October 28, 1998

Prepared by:
Management Communciations and Control, Inc. (MCCI)

2000 North Fourteenth Street, Suite 220
Arlington, VA 22201

Under Contract N68335-98-C-0140

jA-SCAN PROCESSING - CHN_ASNF

DESCRIPTION:

This chain performs the A-Scan time series processing for DICASS CW ping type
data. OMNI and CARD contain the FFT input data. MEF contains the normalized
coefficients for weighting the FFT data. Either OMNI or CARD is selected for
processing; if BB is 1, OMNI is selected, otherwise CARD is selected. The selected
FFT data are decimated and rearranged in frequency order. A sub-band of the
reordered FFT data is then selected for further processing. After the selected FFT bins
are weighted by the normalized weights, the weighted FFT data is inverse-transformed
back into a complex time series. The complex time series is then square-law detected.
The logarithm of the detected data is calculated and requantized into 8-bit data. ASOT
is the output data containing the requantized data with a header inserted at the
beginning. If VALVE = 0 the input data is consumed, but no additional processing is
done, and ASOT is not output.

jA-SCAN PROCESSING - CHN_ASNP (continuedf
CHAIN TOPOLOGY:

OMNI CARD MEF

DASC*FFTSZ, 2, 1, BB,
[OMNI, CARD]

([1]X1)

DASC*FFTSZ,1,
{FFTSZ, 1}, ([1]X1)

([1]X2)

FFTSZ, FFTSZ, 1.FFTSZ/2+1,
FFTSZ/2+2, FFTSZ, ([1]X2)

(X3)

FFTSZ, 1.ASWIND,
(X3)

([1]X4)

Internal Data Modes:
X1, X2, X3, X4, X6, X7. X8 are DCF
X5,X9,X10areDF
XHisINT

NS*NFSS/DASC, 1, 1, HEADER,
MNA, DM1,DM2(X11),#

#, #, ASOT

ASOT DFC_\< (DFC_
HD|/(X11)\LRQT^

DASC*NAS, 1, {NAS, 1},
MEF

(f1]X5)

NAS*NE, 1,
(t1]X5), ([1]X4)

(X6)

NAS, N IF, 1,(NAS-1)/2,
(NAS+1)/2, NAS, (X6)

(X7)

NIF, NFSS, 1,
(NIF-NFSS)/2+1,(X7)

(X8)

NFSS, (X8)

(X9),#

NFSS*NE, ASGN, 2,
0.0, (X9)

(X10)

NFSS*NE,REQ(1), REQ(2), REQ(3),
REQ(4), REQ(5), R EQ(6), (X10)

(xTij

jA-SCAN PROCESSING - CHN_ASNP (continuedf

ALGORITHM:

For the processing performed, see the algorithms in CDRL Q003 for DCP_SPL,
DFC_FCTR, DFC_REORD, VRCJVIUL, FFT_CC, VOC_PWR, VOR_LOG, DFC_LRQT,
and DFC HDL

PARAMETER LIST:

PRIMITIVE = CHNLASNP
PRIMJN = DASC, NAS, NS, FFTSZ, NIF, NFSS, BB, VALVE, ASWIND, ASGN, REQ,
HEADER, MNA, DM1, DM2, MEF, OMNI, CARD
PRIM OUT = ASOT

MNEMONIC INPUT DESCRIPTION INPUT
AMOUNT

MODE RANGE

DASC Decimation Rate 1 to 10
NAS Sub-band size 4 to NIF
NS Scans per Processing Block 1 to 32
FFTSZ FFT Size Constrained
NIF IFFT Size Constrained
NFSS Selected IFFT Output Bins 1 to NIF
BB Flow Control array 1 or 2
VALVE Decimation Control Valve Oor 1
ASWIND* Band Selection Array I Array(2) •Constrained
ASGN Amplitude Adjustment DF tmfloat
REQ* Requantization Parameters DF

Array(6)
tmfloat

HEADER* AIU Header I Array(8) •-32768 to
32767

MNA AUI Header ORed Words I Array(2) •1 to 8
DM1 Data Mask One I -32768 to 32767
DM2 Data Mask Two I -32768 to 32767
MEF* Normalized Weights DASC*

NAS
DF imfloat

OMNLt Omni Data DASC *
FFTSZ

DCF imfloat

CARD* Cardioid Data DASC*
FFTSZ

DCF imfloat

$ These ports govern multiple execution, NE = NS/DASC.
* Array slicing for ASWIND: S([i1 ,][j1 ,][K]) -> ASWIND(i).
* Array slicing for REQ: S([i1,]D1,][K]) -> REQ(i).
* Array slicing for HEADER: S([i1,][j1,][K]) -> HEADER(i).

lA-SCAN PROCESSING - CHN_ASNP (continued)"

MNEMONIC INPUT DESCRIPTION INPUT
AMOUNT

MODE RANGE

ASOT A-Scan Output 1 orO I V_ARRAY|-32768 to 32767

m
Note: KK = (NS*NFSS)/DASC + 8

CONSTRAINTS:

• 1 < ASWIND(2) < FFTSZ
• 1 < ASWIND(2) + ASWIND(1) -1 < FFTSZ
•ASWIND(1) = NAS

FFTSZ = 2**k where k is an integer and 6<k<11
NIF = 2**k where k is an integer and 4<k<10

•REQ(3) > REQ(4)
MOD(NS, DASC) = 0
4NIF + NIF*(NS/DASC) < 16k-1
NS/DASC < 12
READ(OMNI) = NSTFTSZ
READ(CARD) = NSTFTSZ
READ(MEF) = NS*NAS
READ(OMNI) + OFFSET(OMNI) - CONSUME(OMNI) = 0
READ(CARD) + OFFSET(CARD) - CONSUME(CARD) = 0

•KK < KMAX

Note: KMAX is the user-defined maximum size of the output V_ARRAY.

Appendix B - Generalized Mapping of Q003 Primitives
to Domain Primitives

Portable Reusable Application Software
SBIR Phase I Final Report

October 28, 1998

Prepared by:
Management Communications and Control Inc. (MCCI)

2000 North Fourteenth Street, Suite 220
Arlington, VA 22201

Under Contract N68335-98-C-0140

Generalized Mapping of
Q003 Primitives to Domain Primitives

The Q003 primitives are taken from CDRL Q003 December 1, 1993.

Note that Domain Primitives do not support fixed types.

The mapping is organized by Q003 name. Separate charts are used for each of
the Q003 classifications (BFR_, FFT_, VCC_, etc.)

BFR

Q003 DP Comments
BFR_FREQ D BFRF Family of weights has become array.
BFRJMFRQ D BFRF Seems to be extended case of BFR_FREQ.
BFR REL
BFR TRUE

CDM

Q003 DP Comments
CDM CFF D CDMF Without multiplexing.
CDM_CVF D_CDMV Without multiplexing.
CDM CVFM D_CDMV ,
CDM_MRVF D_CDMV With multiplexing.
CDM RFF D CDMF Without multiplexing.
CDM_RFFM D_CDMF With multiplexing.
CDM RFIR D CDMFIR Without multiplexing.
CDM RVF D CDMV Without multiplexing.

DCP

Q003 DP Comments
DCP AVG1 D AVG1
DCP AVGN D AVGN DP not fully implemented.
DCP CGA D CGA
DCP CGA1

DCP CLS D CLS
DCP_CRB D_CRB
DCP_CSMG

DCP DEC D DEC
DCP EAVN D EAVN DP not fully implemented.
DCP_ECLS

DCP_FRQW D_FRQW
DCP_FRQWC D_FRQWC

DCP_ (continued)

Q003 DP Comments
DCP HAMN D HAMN
DCP INTD D INTD
DCP ISDR

DCP LAGI D LAGI
DCP LINT D LINT
DCP MEF D MEF
DCPJYET D MET
DCP METD

DCP_MWAG D_MWAG
DCP MWGT D MWGT
DCP NME D NME
DCP NMED

DCP NORM

DCP NORM3 D NORM3 Mean.
DCP NSE

DCP RINT D RINT
DCP SMERGE D SMERGE Family of sizes has become array.
DCP_SPL D_SPL
DCP_STI D_STI
DCP TSS D TSS
DCP_VDI D VDI
DCP VFILL D VFILL

DFC

Q003 DP Comments
DFC_BMAX —

DFC CAP —

DFC_CAT D CAT Family of sizes has become array.
DFC DMUX D_DMUX
DFC DSCC

DFC_DSD D DSD
DFC ERUP

DFC_FCTR D FLOC
DFC FLOC D FLOC
DFC FMTPK

DFC_HDI D_HDI V_array to vector and vice versa
may be accomplished by D_VFILL.

DFC IOVR

DFC_LRQT D_LRQT
DFC MCS D_MCS
DFC MUX D MUX
DFC OTBD

DFC_OTR

DFC PACK D_PACK
DFC_PSK
DFC REORD D_REORD
DFC_REP D_REP Equivalences output. D_REPNE

Distinct output queues.

DFC_ (continued)

Q003 DP Comments
DFC_REP2 D_REP

D REPNE
Equivalences output
Distinct output queues.

DFC_REQ

DFC_REQV D_REQV
DFC SCAT D_SCAT
DFC_SEP D SEP
DFC STA

DFC SWTH D SWTH ?
DFC_TIME

DFC TSR

DFC UNPK6

DFC VCAT D_CAT Concatenation only.
DFC VPAC

DFC VPC2

DFC_VREP D_REP
D_REPNE

Equivalences output.
Distinct output queues.

DFC VSCT D_VSCT
DFC_VT If maximum number of output elements

desired is KMAX(Y), this can be done with
D_REP or D_REPNE, but KK must be obtained
elsewhere.

If maximum number of output elements
desired is less than KMAX(Y), D_REORD can
be used.

DGP

Q003 DP Comments
DGP BFWT —

DGP_CWFM —

DGP HFMG D HFMG
DGP WWG

DMC

Q003 DP Comments
DMC_CTOR D CTOR
DMC EMC D EMC
DMC FLIN D RTOI
DMC_FXFL ,

FFT

Q003 DP Comments
FFT_CC D FFT
FFT CC3

FFT CR D FFT
FFT R2C

FFT RC D FFT

FIR

Q003 DP Comments
FIR_C1S D_FIR1S Without multiplexing.
FIR_C2S D FIR2S Without multiplexing.
FIR_C7

FIR MC1S D_FIR1S With multiplexing.
FIR MX23

FIR_MX33

FIR MX7

FIR R19

FIR R1S D_FIR1S Without multiplexing.
FIR RISC D FIR1S Without multiplexing.

NF l_

Q003 DP Comments
IIR CIS D IIR1S Without multiplexing.
IIR C22

Ml oc_
Q003 DP Comments

MOC_TPSE D MTRANS

SS >P_

Q003 DP Comments
SSP AGC D_AGC
SSP_BCOR

SSP_BMS — -

SSP CARD D CARD
SSP CCL

SSP COMV

SSP_CVU

SSP DCD D DCD
SSP_DNS

SSP_DSC

SSP EST

SSP FBRG
SSP FPD

SSP_GAG

SSP LPP

SSP LPP2

SSP_LPPA

SSP LPPV
SSP MAP

SSP MBPP
SSP_MEB

SSP_PDF

SSP_PPIN

SSP_SYNO D SYNO

SSP_ (continued)

Q003 DP Comments
SSP TDT —

SSP TINT —

SSP TRK —

SSP_UTD —

SSP ZDT D ZDT

vcc
Q003 DP Comments

VCC_VADD D VADD
VCC_VDIV D_VDIV
VCC_VMUL D_VMUL
VCM CTH2 D CTH2 Parameter TN not used.
VCM CTHS D CTH2 With TD = 0.
VCM DIFM D DIFM
VCM DTH D DTH
VCM_THCC

VCM THRS

VCM_THRST

voc
Q003 DP Comments

VOC_CONJ D_CONJ
VOCJPWR D PWR

VOR

Q003 DP Comments
VOR ATN2 D ATAN2
VOR_IIND D_INDX Either Y or VY may be output. Easy change

to let K be valid data size of B if Y is a
v_array.

VOR INDX D INDX
VOR LIN D LIN
VOR LOG D_LOG
VOR_MAG D MAG
VOR VACM I SLIDE=0, D_VMUL may be used.
VOR_VCC2 D VCC2
VOR_VCIP
VOR VIND D INDX Change to let K be valid data size of B.
VOR_VSQR D_SQRT
VOR ZCC D_ZCC

VRC

Q003 DP Comments
VRC MUL D VMUL

VRR

Q003 DP Comments
VRR_GSUB —

VRR INP D VINP
VRR VADD D VADD
VRR VDIV D VDIV
VRR VMUL D VMUL
VRR VSUB D VSUB

Appendix C - Mapping of Parameters Q003 Primitives
to Domain Primitives

Portable Reusable Application Software
SBIR Phase I Final Report

October 28, 1998

Prepared by:
Management Communications and Control Inc. (MCCI)

2000 North Fourteenth Street, Suite 220
Arlington, VA 22201

Under Contract N68335-98-C-0140

Mapping of Parameters
Q003 Primitives to Domain Primitives

The following tables detail the correspondence between the parameters of a Q003
primitive call and the parameters of the corresponding Domain Primitive call(s).

Domain Primitives that are marked "vp" produce different amounts of output under
different circumstances. Therefore they must be output nodes in a Partition Graph.

BFR_FREQ => D_BFRF
DP param Q003 param Comments

D BFRF
NF NF (1) Must be GIP.
NC NC (2) Must be GIP.
NB NB (3) Must be GIP.
W [1..NBJW (5) Family of weights must be made into array

(of arrays), or a vector if W is input as a
queue. The order of the elements in W has
also been changed: for a given W array
corresponding to an output beam, the array
has as many rows as there are input family
members of X, and each row has as many
columns as there areelements in an X vector.

X X (4)
Y Y

BFRJMFRQ => D_BFRF
DP param Q003 param Comments
NF NF (1) Must be GIP.
NC NC (2) Must be GIP.
NB NB (3) Must be GIP.
W [l..NB]W (5) Family of weights must be made into array

(of arrays), or a vector if W is input as a
queue. The order of the elements in W has
also been changed: for a given W array
corresponding to an output beam, the array
has as many rows as there are input family
members of X, and each row has as many
columns as there are elements in an X
vector.

X X (4)
Y Y

BFR REL =>
DP param Q003 param Comments

BFR_TRUE => ---
DP param Q003 param Comments

CDM_CFF => D CDMF
DP param Q003 param Comments
N N (1) Must be GIP.
MX 1 or UNUSED Must be GIP if used.
FG FG (2)
NC NC (3) Must be GIP.
I I (4)
NP NP (6) May be GIP if NP1 is unused.
X X (5)
Y Y
NP' NP'

CDMCVF => D CDMV
DP param Q003 param Comments
N N
MX 1 or UNUSED Must be GIP if used.
Flaq FG
M M Must be GIP.
F F Must be GIP or VAR array of size 1.
FS FS Must be GIP or VAR.
NP NP May be GIP if NP' is unused.
X X
Y Y
NP1 NP'

CDM_MRVF => D_CDMV
DP param Q003 param Comments
N N
MX MX Must be GIP.
Flaq FG
M M Must be GIP.
F F Must be GIP or VAR array of size 1.
FS FS Must be GIP or VAR.
NP NP May be GIP if NP' is unused.
X X
Y Y
NP' NP'

CDM RFF => D CDMF
DP param Q003 param Comments
N N (1) Must be GIP.
MX 1 or UNUSED Must be GIP if used.
FG FG (2)
NC NC (3) Must be GIP.
I I (4)
NP NP (6) May be GIP if NP' is unused.
X X (5)
Y Y
NP' NP1

CDM RFFM => D CDMF
DP param Q003 param Comments
N N (1) Must be GIP.
MX MX (2)
FG FG (3)
NC NC (4) Must be GIP.
I I (5)
NP NP (7) May be GIP if NP1 is unused.
X X (6)
Y Y
NP' NP'

CDM_RFIR => D CDMFIR
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED Must be GIP if used.
FG FG
NC NC Must be GIP.
I I
NP NP May be GIP if NP1 is unused.
NT NT Must be GIP.
D D Must be GIP.
B B
X X
Y z
NP' NP'

CDM_RVF => D CDMV
DP param Q003 param Comments
N N
MX 1 or UNUSED Must be GIP if used.
Flaq FG
M M Must be GIP.
F F Must be GIP or VAR array of size 1.
FS FS Must be GIP or VAR.
NP NP May be GIP if NP' is unused.
X X
Y Y
NP' NP'

DCP_AVG1 => D AV61
DP param Q003 param Comments
N N Must be GIP.
Flaq FG
X X
Y Y

DCP_AVGN => D AVGN Waiting for implementation decision.
DP param Q003 param Comments
N N Must be GIP.
M M
Flaq FG
K K
A A
X X ■

Y Y
K' K'
A' A'

DCP CGA =>
DP param Q003 param Comments
N N (5) Must be GIP.
PMAX PMAX (1)
SMAX SMAX (2)
REINIT REINIT (3)
RHO RHO (4)
BSI BSI (6)
BSS BSSAVE (7)
SCNT SCNT (8)
PCNT PCNT (9)
PW PW (10) Must be array of size 2.
OMNI OMNI (11)
NS NS (12)
EW EW (13)
SCNT' SCNT'
PCNT' PCNT'
PW PW' Must be array of size 2.
BS BS
BSS' BSS'

DCP_CLS => D CLS
DP param Q003 param Comments
PIC PIC
CDF CDF
C C
CRL CRL
CRH CRH
WIND WIND
R R
NC NC
SI SI
CLI CLI
CLF CLF
CBS CBS
PHS PHS
T T
BEAR BEAR
X X
VY VY
R' R'
NC NC
SI' SI'
CLI' CLI'
CLF' CLF'
CBS' CBS'

DCP CRB =>
DP param Q003 param Comments
N N
NDV NDV
RSL RSL
B B
KA KA
KB KB
Q Q
CBN CBN
Z Z
LBIN LBIN
DW DW
CB CB
DCB DCB
MT MT
CB' CB'
DCB' DCB'
CBOFF CBOFF
DCBOFF DCBOFF

DCP_CSMG =>

DCI

DP param Q003 param Comments |

>_DEC => D_DEC
DP param Q003 param Comments
N N Must be GIP.
D D Must be GIP.
X X
Y Y

DCE MEÄVN => D_EAVN vp Not fully implemented.
DP param Q003 param Comments
N N (2) Must be GIP.
M M (1)
A A (3)
Flaq FG (4)
YO YO (5)
X X (6)
Y Y
YO' YO'

DCI >_FRQW => D_FRQW
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
NW NW Must be GIP.
B B
TS TS Must be GIP.
W W
X X
Y Y

DCI >_FRQWC => D_FRQWC
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
NW NW Must be GIP.
B B
TS TS Must be GIP.
W W
X X
Y Y
YC YC

DCI > HAMN => D HAMN
DP param Q003 param Comments
N N Must be GIP.
Flaq FG
X X
Y Y

DCP_INTD => D INTD
DP param Q003 param Comments
N N Must be GIP.
MX MX Must be GIP.
NW NW Must be GIP.
M M Must be GIP.
INCR INCR
RY RY Must be GIP.
W W
X X
Y Y

DCP_ISDR =>
I DP param | Q003 param | Comments

DCPLAGI => D LAGI
DP param Q003 param Comments
NS NS Must be GIP.
B B Must be GIP.
CL CL Must be GIP.
V V Must be GIP.
W W Must be array.
STB STB Must be array.
X X
Y Y

DCP LINT D_LINT
DP param Q003 param Comments
N N Must be GIP.
M Must be GIP.
DX DX
XO XO
X X
Y Y
Z Z

DCP_MEF => D MEF
DP param Q003 param Comments
NS NS (1) Must be GIP.
NB NB (2) Must be GIP.
WF WF (3) Must be GIP.
GF GF (4) Must be GIP.
KACF KACF (5)
KARF KARF (6)
NA NA (7) Must be GIP if used.
AW AW (8)
B B (9)
M M (10) Must be GIP or VAR
NY NY (11) Must be GIP.
SB SB (12)
PC FC (13)
CBO CBO (14)
EPF EPF (16)
POF POF (17)
RPF RPF (18)
X X (15)
Y Y
SM SM

DC! > MET => D W ET vp
DP param Q003 param Comments
NS NS (6) Must be GIP.
NB NB (1) Must be GIP.
WF WT (2) Must be GIP.
GF GT (3) Must be GIP.
KACF KACT (4)
KARF KART (5)
SUMLT SUMLT (7)
C C (8)
R R (9)
CP CP (10)
Flaq BFLAG (11)
EPF EPT (13)
POF POT (14)
RPF RPT (15)
X X (12)
SUMLT' SUMLT'
C C
R' R'
CP' CP'
MT MT

DCI >_MWAG => D_ MWAG
DP param Q003 param Comments
N N Must be GIP.
W W Must be GIP.
L L Must be GIP.
X X
Y Y

DCP_MWGT => D MWGT
DP param Q003 param Comments
NX NX Must be GIP.
NV NV Must be GIP.
J J Must be GIP.
K K
W W
B B
II INDX
X X
Y Y

DCI S_NME => D NME
DP param Q003 param Comments
N N Must be GIP.
K K
L L
W W Must be GIP.
X X
Y Y

DCE

DCE

>_NMED => —
DP param Q003 param Comments

_N0RM3 => E L.N0RM3
DP param Q003 param Comments
N N Must be GIP.
W W Must be GIP.
G G Must be GIP.
T T
WT WT
FG UNUSED
X X
NME NME
Y Y

DCP _NSE =>
DP param Q003 param Comments |

DCP_RINT => D RINT
DP param Q003 param Comments
N N Must be GIP.
L L Must be GIP.
K K
SF SF Must be GIP.
YO YO
XO XO
X X
Y Y
YO' YO'
XO' XO'

DCP SMERGE => D SMERGE
DP param Q003 param Comments
NB NB Must be GIP.
N [1. .NB]N Must be GIP. Family of sizes must be made

into array.
NW NW Must be GIP.
W W
X X
Y Y

DCP_SPL => D SPL
DP param Q003 param Comments
N N Must be GIP.
M NB Must be GIP.
B BLS Must be GIP.
X X
Y Y

DCP_STI => D_STI vp
DP param Q003 param Comments
N N (1) Must be GIP.
M CL (3) Must be GIP.
K K (4)
A A (5)
X X (6)
Y Y (3)
K' K' (1)
A' A' (2)

DCP_TSS => D_TSS vp
DP param Q003 param Comments
N N (2) Must be GIP.
C COUNT (3)
T THRES (4) Must be GIP.
F F (5)
S S (6)
X X (7)
c C
F' F'
VAR VAR
STD STD ..
MEAN MEAN

DCP_VDI => D_VDI vp
DP param Q003 param Comments
N N (1) Must be GIP.
M CL (3) Must be GIP.
V V (4) Must be GIP.
K K (5)
A A (6)
X X (7)
y Y (3)
K' K' (1)
A' A' (2)

DCP_VFILL => D_VFILL
DP param Q003 param Comments
N N Must be GIP.
P P Must be GIP.
J J
V V
X X
Y Y

DFC BMAX =>
| DP param Q003 param Comments

DFC CAP =>
DP param Q003 param Comments

DFC CAT => D CAT
DP param Q003 param Comments
M M Must be GIP.
NC NC Must be GIP.
N [l..NB]N Must be GIP. Family of sizes must be made

into array.
X X
Y Y

DFC DMUX => D DMUX
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y

DFC DSD => D DSD
DP param Q003 param Comments
N N Must be GIP.
T T Must be GIP or YAR.
Cl Cl Must be GIP or VAR.
C2 C2 Must be GIP or VAR.
C3 C3 Must be GIP or VAR.
M M
S S
X X
Y Y

DFC ERUP =>
DP param Q003 param Comments

DFC : FCTR => D FLOC vp
DP param Q003 param Comments
K K Must be GIP array of size N, each element

set to value of K.
N N Must be GIP.
M M Must be GIP.
B B
X X
Y Y

:_FLOC => D_ FLOC vp
DP param Q003 param Comments
K K Must be GIP array of size N,

set to value of K.
each element

N N Must be GIP.
M M Must be GIP.
B B
X X
Y Y

DFC_FMTPK =>
DP param Q003 param | Comments

DFC_HDI => D HDI
DP param Q003 param Comments
N N (1) Must be GIP.
FH FH (3)
MN MN (4) Must be array.
DM1 DM1 (5)
DM2 DM2 (6)
X X/VX (7)
M M (8/9)
Y Y
VY VY

DFC

DFC

:_IOVR => --
DP param Q003 param Comments

:_LRQT => D_ .LRQT
DP param Q003 param Comments
N N (1) Must be GIP.
C C (2)
0 0 (3)
UR UR (6)
LR LR (7)
UL UC (4)
LL LC (5)
X X (8)
Y Y

DFC : MCS => —
DP param Q003 param Comments
FC FC
K K Must be GIP.
N N Must be GIP.
NAB NAB
M M Must be GIP ARRAY(5).
MM MM Must be GIP.
W W Must be GIP ARRAY(5).
B B
CC CC
C C
CX CX
X X
FCS' FCS'
C c
X' X'
Yl Yl
Y2 Y2
Y3 Y3
Y4 Y4
Y5 Y5

DFC_MÜX => D_MÜX
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y

DFC OTBD => ---
DP param Q003 param Comments

DFC OTR =>

DFC

DP param Q003 param Comments

:_PACK => D_PACK
DP param Q003 param Comments
NX NX Must be GIP.
NY NY Must be GIP.
M M Must be GIP.
B B Must be GIP.
FG FG
RVO RVO
X X
Y Y

DFC

DFC

: PSK => —
DP param Q003 param Comments 1

:_REORD => D_REORD
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
A A
B B
C J
D K
X X
Y Y

DFCREP => D REP (Equivalenced output queues,
initialized.

Output queues cannot be

DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y

=> D_REPNE vp Distinct output queues.
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
S UNUSED
X X
Y Y

DFC_REP2 => DREP (Equivalenced output queues. Output queues cannot be
initialized.)

DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y

=> D_REPNE vp Distinct output queues.
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
S UNUSED
X X
Y Y

DFC_REQ => D_REQ
DP param Q003 param Comments
N N Must be GIP.
C C Must be arrav.
X X
Y Y
Z Z

:_REQV => D_ .REQV
DP param Q003 param Comments
N N Must be GIP.
A A
FD FD
NL NL Must be GIP.
KI KI
X X
Y Y
Z Z

:_SCAT => D_ SCAT vp
DP param Q003 param Comments
NC NC Must be GIP.
C C
M M Must be GIP.
N N Must be GIP.
X X
Y Y
UY UY
K K

DFC_SEP => D SEP
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y

DFCSTA =>
I DP param | Q003 param" Comments

DFC_SWTH D_SWTH vp DFC_SWTH works in conjunction with the Q003
function MERGE. D_SWTH is a standalone
primitive. Hence the following parameter
associations are merely guidelines; the
parameter C may need to be altered to allow
D_SWTH to perform like DFC_SWTH

DP param Q003 param Comments
N ream (X) Must be GIP.
M members(Y) Must be GIP.
C C See note above.
X X
Y Y

DFC

DFC

DFC

: TIME =>
DP param Q003 param Comments

:_TSR => —
DP param Q003 param Comments

: ÜNPK6 =>
DP param Q003 param Comments

DFC VCAT => D CAT Concatenation only, with NC = 1. If NC > 1, each
input family member must previously be run
through D_CAT to combine each set of v_arrays
into one v_array. For reordering, a
combination of D_SEP and D_CAT may be used.

DP param Q003 param Comments
M M Must be GIP.
NC NC Must be GIP.
N UNUSED
X X

DFC VPAC =>
| DP param Q003 param Comments

DFC_VREP => D REP Equivalenced output queues. Output
queues cannot be initialized.

DP param Q003 param Comments
N UNUSED
M M Must be GIP.
X X
Y Y

=> D REPNE vp Distinct output queues.
DP param Q003 param Comments
N UNUSED
M M Must be GIP.
S UNUSED
X X
Y Y

DFC_VSCT => D_VSCT
DP param Q003 param Comments
NC NC Must be GIP.
NY NY Must be GIP.
CM CM
CNC CNC
FG FG
FO FO
M M Must be GIP.
X X
VY VY
KK KK

DFC_VT => If the maximum number of output elements
desired is KMAX(Y), DFC_VT may be accomplished
with D_REP or D_REPNE. If the maximum number
of output elements desired is less than
KMAX(Y), D_REORD may be used. KK is the amount
of valid data in each output v_array, but no
Domain primitive exists to extract this
information from a queue of v_arrays.

DGP_BFWT =>

DGI

DGI

DP param Q003 param Comments

>_CWFM => --
DP param Q003 param Comments |

>_HFMG => --
DP param Q003 param Comments
NY NY Must be GIP.
A A
DC DC
FOTC FOTC
PO PO
TCFS TCFS
I I
Y Y
I' I'

DGI >_WWG =>
DP param Q003 param Comments

DMC_CTOR => D_ CTOR
DP param Q003 param Comments
N N Must be GIP.
X Z
Y X
Z Y

DMC :_EMC => D_EMC
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y

DMC :_FLIN => D_RTOI
DP param Q003 param Comments
N N Must be GIP.
A A
B B
X X
Y Y

DMC : FXFL
DP param Q003 param Comments

FFT_CC => D FFT
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
FI FI Must be GIP.
B B Must be GIP.
Ov UNUSED
X X
Y Y

FFT CC3 =>
DP param | Q003 param | Comments

FFT CR => D FFT
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
FI FI Must be GIP.
B B Must be GIP.
Ov UNUSED
X X
Y Y

FFT R2C =>
DP param Q003 param Comments

FFT_RC => D FFT
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
FI FI Must be GIP.
B B Must be GIP.
Ov UNUSED
X X
Y Y

FIR_C1S => D FIR1S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED Must be GIP if used.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y

FIE l_C2S => D_FIR2S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED Must be GIP if used.
NT1 NT1 Must be GIP.
NT2 NT2 Must be GIP.
Dl Dl Must be GIP.
D2 D2 Must be GIP.
A A
X X
Y Y

FIF

FIF

I C7 =>
DP param | Q003 param Comments

L.MC1S => D_FIR1S
DP param Q003 param Comments
N N Must be GIP.
MX MX Must be GIP.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y

FIF

FIF

FIF

FIF

I MX23 =>
DP param Q003 param Comments

I MX33 =>
DP param Q003 param Comments

I MX7 =>
DP param Q003 param Comments

I R19 =>
DP param Q003 param Comments

FIR_R1S => D FIR1S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED Must be GIP if used.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y

FIR_R1SC => D FIR1S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED Must be GIP if used.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y

IIR_C1S => D IIR1S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED Must be GIP if used.
NZ NZ Must be GIP.
NP NP Must be GIP.
D D Must be GIP.
C C
Flaq FG
X X
YO YO
Y Y
YO' YO'

IIR_C22 => —
| DP param Q003 param | Comments

MOC TPSE => D MTRANS
DP param Q003 param Comments
M N Must be GIP.
N M Must be GIP.
X X
Y Y

SSP_AGC => D AGC
DP param Q003 param Comments
N N Must be GIP.
NI NI
FC FC
PERIOD PERIOD Must be GIP.
PMAX PMAX
PMIN PMIN
PTARG PTARG
FG FG
C C
X X
Y Y
FG' FG'
C C
CNT' CNT'

SSI

SSI

SSI

>_BCOR =>
DP param | Q003 param Comments |

» BMS =>
DP param Q003 param Comments

>_CARD => D_CARD
DP param Q003 param Comments
N N Must be GIP.
A A
B B
C C
CS CS
X X
Y Y
Z Z
CR CR

SSI

SSI

SSI

> CCL =>
DP param Q003 param Comments

>_cvu =>
DP param Q003 param Comments

>_DCD => D_DCD
DP param Q003 param Comments
N N Must be GIP.
XS XS
XC XC
XO XO
YS YS
YC YC

SSP DNS =>
DP param | Q003 param Comments

SSP DSC =>
| DP param Q003 param | Comments

SSP EST =>
| DP param Q003 param | Comments

SSP_FPD =>
| DP param Q003 param Comments

SSP_GAG => —
DP param I Q003 param | Comments

SSP_LPP =>
DP param | Q003 param Comments

SSP LPP2 =>
DP param Q003 param Comments

SSP_LPPA =>
DP param Q003 param Comments

SSP MAP =>
DP param Q003 param Comments

SSP MEB =>
| DP param Q003 param Comments

SSP PDF =>
DP param Q003 param | Comments

SSP PPIN =>
DP param Q003 param Comments

SSP_SYNO => D_SYNO
DP param Q003 param Comments
N N Must be GIP.
FG FG
MAGVAR MAGVAR
NS NS
EW EW
OMNI OMNI
BEAR BEAR

SSP TDT =>
DP param Q003 param Comments

SSP TINT =>
DP param Q003 param | Comments

SSP_TRK => •
| DP param Q003 param | Comments

SSP ÜTD =>
DP param Q003 param Comments

SSP_ZDT => D ZDT
DP param Q003 param Comments
N N Must be GIP.
CF CF
BS BS
X X
F F
S S
SCF SCF
BSY BSY
Y Y

VCC_VADD => D VADD
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y
Z Z

vcc :_VDIV => D_ .VDIV
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y
Z Z

vcc : VMUL => D VMUL
DP param Q003 param Comments
N N (1) Must be GIP.
Flaq 1-FG (2)
X X (4)
Y Y (3)
Z Z

VCM_CTH2 => D_CTH2 The Q003 parameter TN is not used; its effects

DP param Q003 param Comments
N N (1) Must be GIP.
Flaq FG (2)
T T (3)
TD TD (4)
X X (6)
Y Y (7)
K K
Z Z
B B

VCM_CTHS => D CTH2
DP param Q003 param Comments
N N Must be GIP.
Flaq FG
T T
TD 0
X X
Y Y
K K
Z Z
B B

VCM_DTH => D_DTH
DP param Q003 param Comments
N N Must be GIP.
M M
PIC PIC
W W
WIND WIND
CTHR1 CTHR1
CTHR2 CTHR2
FTHR1 FTHR1
FTHR2 FTHR2
R R
X X
Y Y
R' R'
Z Z
T T

VCM THCC =>
DP param Q003 param | Comments

VCM_THCC =>
1 DP param Q003 param Comments

VCM THRS =>
| DP param Q003 param I Comments

VCM THRST =>
DP param Q003 param I Comments |

VOC_CONJ => D CONJ
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y

voc :_PWR => D_PWR
DP param Q003 param Comments
N N Must be GIP.
Ov UNUSED
X X
Y Y
Z Z

VOJ I ATN2 => D ATAN2
DP param Q003 param Comments
N N Must be GIP.
FG FG
X X
Y Y
Z Z

VORIIND => D INDX Either a normal vector or a v_array
may be output. Either may be changed
to the other by using D_VFILL. For
v_array output Q003 parameter KY is
not available through an MPIDGen
primitive.

DP param Q003 param Comments
N N Must be GIP.
K K
B B/VB This may be a v_array if Y is a v_array.
X X
Y Y/UY

VOR INDX => D INDX
DP param Q003 param Comments
N N Must be GIP.
K K
B B
X X
Y Y

VOR LIN => D LIN
DP param Q003 param Comments
N N Must be GIP.
A A
B B
X X
Y Y

VOR_LOG => D_LOG
DP param Q003 param Comments
N N Must be GIP.
BASE B
A A
B C
X X
Y Y

VOI l_MAG => D_MAG
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y

VOE l_VCC2 => D_VCC2
DP param Q003 param Comments
N N Must be GIP.
UR REPLU
LR REPLL
UL CLIPU
LL CLIPL
X X
Y Y

VOE l_VIND => D_INDX
DP param Q003 param Comments
N N Must be GIP.
K UNUSED
B B
X X
Y Y

vor L.VSQR => D_SQRT
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y

vor l_ZCC => D_ZCC
DP param Q003 param Comments
N N Must be GIP.
B UNUSED
X X
Y Y
Z UNUSED

VRC_MÜL => D_VMÜL
DP param Q003 param Comments
N N Must be GIP.
Flaq 1-FG Must be GIP.
X X
Y Y
Z Z

VRRINP => D VINP
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y
Z Z

VRR_VADD => D VADD
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y
Z Z

VRR VDIV => D VDIV
DP param Q003 param Comments
N N Must be GIP.
X X
Y ' Y
Z Z

VRR VMUL => D VMUL
DP param Q003 param Comments
N N Must be GIP.
Flaq UNUSED
X X
Y Y
Z Z

VRR VSÜB => D VSUB
DP param Q003 param Comments
N N Must be GIP.
Flaq UNUSED
X X
Y Y
Z Z

Appendix D - Partition Graphs - Iconic Form

Portable Reusable Application Software
SBIR Phase I Final Report

October 28, 1998

Prepared by:
Management Communciations and Control, Inc. (MCCI)

2000 North Fourteenth Street, Suite 220
Arlington, VA 22201

Under Contract N68335-98-C-0140

Appendix D. Partition Graphs - Iconic Form

This Appendix contains the iconic form of each Partition Graph for the DICASS sonobuoy
processing application ported from the AN/UYS-2 implementation to the MCCI
Autocoding Toolset implementation.

S_AOUT .DUMF SLSASVM

5_XCI

5_HTGU

5LÖCI

c Mrvci ->— "VA

5_TRGQ

GATHERED_OUTPUT_1

SL.AOUTC S^DUMI 5_SPB

SLAPINGT IPJ HJ 5_FMD| _ STEER

H*W-^

! ¥*mm. iH *jh -

SLASEL SLHEADE

| J^n 3 I Km* 5_KVtA

SEASON SLLPB

5_MAGUA

S.BCF

S_ BCI

5_MCF

5_MCI

P
5.CARD

S.CARD B

SLNCF

SLNCI

5_CCCF

S_CCCI

s_ijU r

5_PATHN

5_PINGT!
:—
TV

:
5_ REP RO

5 AREUE 5 GCFS2 5 WCF

:mmmmm

'■ 5_CCI S^SASFC

Figure 1. Partition PJNF

D-1

"S CGAU SsMTRG

S CGAU S MCTL

S CGAU S MRGC

S_CGAU_S_DUMMY
■-APINGT

Figure 2. Partition P_INF_1

S_lNFL_S_CNT

GATHERED - OUTPUT 1

SS INFl S FLOW

S.AFING

JNFL_S

rj_INFL_S

PSTRT

Figure 3. Partition P_INF_2

D-2

SulHI

5_CPT

ISL.SPTR

S_TRGU

QATHEREDL;bUTPUT_l;:

5_FFTS

!5_F1FF5

5_F0TC

5-F5

'SJ

5JNITI

5JNITP

S_JJ

S_MSR

5_N

_5_SCAL

S_SN

■S_SONF

5_5RL

«5_5TB

S_5W

,5_TCF5

. S_ZER

Figure 4. Partition P_INF_3

D-3

GATHERED INPUT 1

3 CGAU S CNT1

S CGAÜ S MCTL

S_CGAU_

SSCGAU1IS_EWIN

Figure 5. Partition P_CGA_1

i CGAU S «EWIN

S CGAU S_MTRG

JS_APING

iS CGAU

|s_REPRQ

GAtHEREDOUTPUTS

Figure 6. Partition CGA_2

D-4

S_CGAU_S_NSOT

":||_APINQI

5.C0AU.

: 1-COAU.

5_C0AU_

S_CGAU_

■5_C0AU_

:5_C0AU_

Figure 7. Partition P_CGA_3

GÄTHEREDjNPUTj

äS CWSP S eWIN S CNT1

S^GWSP2S_CWIN^S^EWC

S CWSP_S CWIN S^lylUXQ

tS_CWSP_i

|-cwsp.:

Figure 8. Partition P_CWSIN_1

D-5

üäTHEREDJNPUTSI

13 CWSP S diSl :SriCNT2

S CWSFjSijWiNlSiRSEL;;:

Jf_CWSP_S_CWIN_S_RTG

:S_CWSP_

Figure 9. Partition P_CWSIN_2

EM

SL:CWSP_5_CWN_S.

[;S_CWS F>_ S^CWKL SL5IRT

IsLCWS P_5LCWN_ S_DU M

S_CWSP_S_CWN_S30

CWSP_S_RTD

ScCWSP_S_CWN_S.

P_S_CWN_S_DNXT

CWS P_ S_CWIN_S_ RT Rö

S_CWS P_ S_CWN_ S_CIC

P_S_CWK.S_ftSEt

S_CWSP_S_CWN_5_BTRQ

S_CWSP_S_CWN_S_MR6Q

S_CWSP_S_CW1N_5_DUMI|1V

S_CWS P_ 5_CVHN_ S_ EWC

Figure 10. Partition P_CWSIN_3

D-6

S CWSP S CWIN SPTRG

S CWSP S CWIN S LOOP

:S CWSP_S_CWIN_SiTRG2

S CWSR S CWIN SJ3TG

SsCWSP 'jsm WIN_S^NXTR

*** *~ |

Figure 11. Partition P_CWSIN_3B

S_CWSP_S_CWIN_S_EWCS\ S-SC11

GATHEREDIOUTPffKlfl

S CWSP S CWIN S ETRG

S_REPRO

Figure 12. Partition P_CWSIN_3C

D-7

S CWSP S CWIN S TIME

GATHERED_OUTPOT

SiGWST«

:WSP„S_CWIN_S_SA

GATHERED OUTPUT»f"

S_CWSP_-

LCWSP_

i_RAOUJ_

r——
■_REPRO

SMPI

S_S5C16

If-STIMER

Figure 13. Partition P_CWSIN_3D

tS CWSP"S-iCWiN S_ESZ

S_CWSPJS JCWINf SlENXT

S CWSP.ISiCWIN1 S_EWPG

Figure 14. Partition P_CWSIN_3E

D-8

S.CVf'S P_ S_C VMN_ 5_ EW?

(5-CWS P_ SLCWK. SLN P EW

S_C WS P_ S_CYV1N_ S_ EWC 5

Figure 15. Partition P_CWSIN_4

D-9

5_CWS P_ S_CWN_ Si H S MQ 5_CWSP_5i.CWL5iZ<?

S_CW5P_S2CM1I>(_SU»ISTQ

S_CW5P_S_NSSPls_c«y

MS_CWSP_S_CWICS_EWTQ

5_CW5P

S_CWSP_5INSPF

_CW-P_S_CWH_S_EWCD

LCWS PI5_CWN_ 5iSC2

fcft/5_CWSP^S_ESPF.
RE
CWy

i.CWSP_s£EWSP

5_CW5 P_ S_CV.1N_ S_0 M M(?

S_C WSPI5L.CWM.S-Ö MTQ

S_CW5P_S^0MAU

S_CWSP_S_CWN_S_5CI ;

S_CWSP_5_QSPF

Sj;W5fcS_0K|/ 5_CWSP_S_0MSP

"slew

;.;■■&

Figure 16. Partition P_CWSIN_5

: S;OW5P_S_CWN;:5-MUXI5

1-W5P

vs_cH_p_s_cwi>_5_iiiu>iT

S_C-WSP_S_C«t_S_Cl':K (o_PMUi<\ S.CWSP.S.CWK. SLCWMQ . f O.ZDI;

5_CWSE_B_CWM.5L.NSMQ ,

S_CWSP_S_CH1N_S_0MI31

, f O-KI ,
5_CW5P_S_CMM_S_0«IM|J13_CWSP_ J

S_CWSP_S_CWN_S_OPml

SwrJ

S_CWSP_S_OPWS

;;S_bWSP_S_CW1lt5_Z1

: OAtHE RED_0UTPUT_1

jS-CwspJS_CWSP_S_CV.IN.S_2I;

SSICWSI'.S-CWN-S-S

S_CWSP_5_CiHN_S_Z-

6MHEP.ED_0UTPU1_2T

Figure 17. Partition P_CWSIN_5B

D-10

S_CWSP_S_OSPF
S CWSP S CWIN S SC3

S_CWSP_S_CDSP

:::S_CWSP_SS>UMP

8 CWSP

S CWSP

•8 CWSP

a CW.:

•3 CWSP

S CWSP

Figure 18. Partition P_CWSIN_6

GÄTHEREDJNPUT:

S_CWSP_S_CNCLK

S SCWSP S GLHD

S.CWSP_

S_CWSP_

Figure 19. Partition P_CWSIN_7

D -11

SJSWSP S2ELHD

S CWSP_S DM1

|5_CWSP_ ■:

S_CWSP_:

s CWSP_
Vgl '.

S CWSP_

5_CWSP_

S_HEADE

Figure 20. Partition P_CWSIN_7A

iGATHERED INPUT1

I5_CWSP^CWIN_S_SG3

S CWSP "S CWWS^SJ

|S_CWSP^

S_CWSP_

S_CW5P_

i CWSP

Figure 21. Partition P_CWSIN_8

D-12

|;53;W5K;S.A5CAM.5L:A5CH.5^X2

«S_CWSI>_S.A5CAN.5!_ASChL5L:X3

pATHEREDZÖÜTPUI_1

S-CW-SP.

5_CW5P_

5_CWSP_

5_CWSP_

^—:

S.5PR

Figure 22. Partition P_CWS_1

i '
S_CWSP_ S_CWSP_

J_CWSP_ s_cwsr2

S_CWSP_ • S_CWSP_

»GATHERED INPUT 1
S_CWSP_SfCNWF

::S CWSPSJYÄTER "SJM=AUES_X10

LC^j

' S_CWSP_

jS_CWSP_

^——
S_CWSP_

!S_CWSP_

r

S_CWSP_

S_CWSP_

: s.cwsp.

:S_CWSP_

S_CW3P_-

Figure 23. Partition P_CWS_1A

D-13

iS_CWSP_Sj«TER_S_WFAl.US_X10
■ y

jfi

ISLC

S_CWS P_ 5_WAT E R_ S_WFA L U. S_ X11]

Pit
b5_CWSP_SJVATE03VFAll^S_X12j

|S_CWSP_S_WiTEH_HVFALL_SL.X12A

S_CWSP_S3>ATER_S_WFALL-5_X13

S_CWSP_S_PHWI

SLCW5P_SL.W\TER_S-WFALL.5LTAI1^S-X1S :1::
IS.CWSj

S_CWSP_S_WATER_5_WFALLS_TAIlw5_<J1?|

5_CW5 P_ S_WAT E R_ S_D III 1 f

g=L,SWFQ

SLCVVSP_S_TOTEfcSLV^FAl.l^SLTAIi5S^:X15 '

ICcwi

■ 5_CWS S_CWS

'5-CWS |S_HEA

5-CWS S.UAS

ILcws

iSI

^^

RÜMÜ

"slews

"SLCWI

BIS

Bill

Figure 24. Partition P_CWS_1B

D-14

5_CW5 PJ5_A SCAR. 5_A SCNJ 5_X6

5_CWS P_ S_A SCAN_ S_A SCN_ S_ X7

5_CW5 P_ S_A SCAN. S_A 5CN_ 5_ X8

SJCVVS PLIS_ A SCA W_S_ASCN_S_ X9

5_CW5 P_ S_A SCAN. S_A 5CN_ S_ X10

5_CW5 P_ S_A SCAN. S_A SCN_ S_X 11

S_CWSP_S^A SCAN^SlASCN_;CX 12

S_CWS P_ S_A SCAN- S_D M1

5_ASG

S_CW5

"slews

5_CW5

li_cws.

S_CWS

S_CWS

_cws

;5_cws

IsfcewS;

S5_CWS

lg„cwg

S_CWS

ILcws.:

s_cws

5_HEA

5_SPB

S_UAS

Figure 25. Partition P_CWS_1E

D-15

:::S^CWSP_S_ASCÄN_SjftSCN_S_X5

fS'cmr SAscm'TÄscmsm

S CWSP S ASCAN S ASCN S >M

S.CWSP.

S_CWSP_

:|sjew8i»li

!S_CWSP_

S_SPB I

Figure 26. Partition P_CWS_1F

«S¥CWSP S OPWS

f-S CWSP"SISMPO

S_SRAQ

6 CWSP S SMPI

S_CWSP_ S_CWSP_

^_CV/SP_ S_CWSP_

^_CWSP_ S_CWSP_

|£cWSP_ S_CWSF§

S.CWSPI S_CWSP_

ppps 3_CWSR1

atfSSwä..- HHB
||JCWSP_ [S_RA0UT

JCWSP_ ' S_SMPF

S_CV<SP_-

|s_CWSPg

CWSP_

S_CWSP_

Figure 27. Partition P_CWS_1K

D-16

aSCWSKtPHBR-

£***!

5_CWSP_5^BEAR_5_BEAR_5;IAIU5-X15

jiliii ilili
JÜJÜ

BUM«

Beg

sag

Ma*
c^5

S.CWS'J5LCWSp;S.BEAR_S-BEAR_5_TAIU53(16

Figure 28. Partition P_CWS_1L

; :GÄtHERE0_INPUT_2

^CWSP_iLA5CA^*lA5CI<.5^ültin

' OAiHEBECLOUIPUt;

tffcevwisakaft

5-CWSP„S-ASCAH„5„A5Chi.S„ULW! *&,^*Si

iOAIHEREduOUTPUU

jiii^CWSPlaLAUpiCLSLCNf

OATHEREELOUTPUV

MM-.

1555«:

l_SP»

Figure 29. Partition P_CWS_2

D-17

SLOWS P_ 5_AUDIOf Si FL

S_CWS l>_ S_AUDI02 S_ FFII
5_CWS Pls'SJAtipip2 515 ITC O RIO

^-CVVSy S_CWSP_5_AUDI0_S_N0TCH_TRIG \$_CWS}

■A S_CWS P_ S_ AUDICU 5_CiP:>

5_CWSPIS_AUDI0_S_I

S^CWS PL. S_AUDIO_ S_AOCi

S_CWS PL;S_AUDIO,S_ACNT|
SlCVVS P 5 AUDIff-SjCAU

5LEWS PLJ3_ÄUDI0l3LTGAU

S_CW5 P_5_AUDI0_5_D LAV

S_CWS P_SJAÖDIO_ SilNTi

SiC WS P_ S_AÜDIOLSlD MO

SISAUi

S^CWS P_ S_ AUDIO. S2W0TCHW

,5_A0R ■ S_PP

S_AGT S_PTA

-S-ALC S_SAU

J_r\t>W S^CYTT

■1_AL0 S_CW

MäFsm
S.AUP ■ S_CW

Xcw Xcw

IMS g^

I S^CVr 5_CW

5-cw Xcw

|5-cw S_CW

S-CW S_CW

s_cw 5_cw

meg fHg£

Figure 30. Partition P_CWS_2B

D-18

5_CW5P_5_NMEA1>C.5_CP
ji: S_CW5P_S_NMEAN:5JR|
:S_OW5P_S_NHIEAN_S_Stl1L7|

S_CWSP_S_NMEAN_S_C

S-CWSP.SiNIIIEAUCSuFIIINI

: 5_CWSP_S_N MEAN.5_FMIN,
sS.CWSPJ^WEAItS.FNE

äsS-OWSPrSLCDCIII

S.CWS PJS_C M EAN_ S_ FMIN

frSLCWSP^SLCMEAN.SLP.
S_CWf-P_5_CMEAN_S_CP|
:S^CWSP_S_CMEAN_S_C

CWSP_S_CMEAN_5_SM1.T

läSCWSPZ'Ce'MEANjSLFiriNl

5_CWi> Skew's

-CWS s_cws

S-CW5

s-tsws

5EBÜ EH
1S^

$_CM>5P_5_CMEAN_S_FNE

I

li-CWS S.5hl

5.SMPI

OAIHERED.OUIPÜÜJ

S.CWS

Figure 31. Partition P_CWS_3

S_C WS P_ S_C hi E AH. S_ FP S B

S_CWSP_ S_C M EAM_ S.UMVVF

S_CWSP_S_BRCC

S.CWS P_ S_C M EAN_ 5_ 51

S.CWS P_ S_C »1E AUL S_C LI
s i S^CWS P_ S_C 111 EAN_ S_Nf

"S_.CWSP_S_CltlEAM.5_CB
S_CWS P_S_C M EAN_5_C L
S.CWS P_ S_C M E AN. 5_ R R

S.CWS P. S.C M EAN_ S.NO R11

S_CWSP_S_ClilEAN_S_RCT|

slews p_ s_c lii EAK- slfcisi

S_CWS P_ S_C III EAN_ S_C L MN

CWS P_ S_C IH E AN_ S_ FDQ
S_CWS P_ S_C M EAM. S.WFtltQ^

CWS P. S_CMEAt._S_ WFX U)J>&

S_CWSP_5_CMEAt^S_Nll1WF 3_CWSP,_5_e_DP

WSP_S_CIIIEAN_5_ FMNT

S.CWS P_S_C ID E AN. S_ FMNI

S_CWSP_S_ASM

Figure 32. Partition P_CWS_3B

D-19

fGATBE]

ES-A5CA

,S_CWSP

LCV/SP

D_FLOC
_CWSP_S

KÖÄTHERED_GÜTPU1J |tGATHERED_OUTPUTJ^I

SäJyijfiii^DNi^f^ffl-S^^^feöifirJHlt^l :^SSSS1- ?S_CWSP

S CWSP

LCWSP

Figure 33. Partition P_CWS_3C

S;S_CWSR_5-NlilEAN_i.CU
?:S_CWSR_5LNMEAI>L5-i>R
;5_OWSP_S_NMEAN_S_CLF
S_CW5P_5_NMEAtC5-CB5
:; 5_CWSf>_S_NMEAN_5_SI
|S_CWSI>.S_NMEAI>(_S_NC

Figure 34. Partition P_CWS_3D

D-20

i'CAIHEREDLllNPUT.
S_CWSPt5CCNDP*

H-cwsf^siDaptftiSiDoitiSEiia

L T^I

SLCWSP.

S-CWSP.

1-W5P-

i^CiVSr^

5_CWSP_,

Figure 35. Partition P_CWS_3E

CCWSP_S_DBPtR_5LDp?>-SL-X8

jS-CWSPh«-
S_CWSP_S_SO

:::S_ewSP_5_DOPl.P^5_OOP_S_X9

5_C WS P_ S-DO PIJL SIDO P_ 5_TAI li. S.

SSCCW5P_:5_f>HDP

S_CWSP_S_D0PIR_S_00P_S_IAHS_X1^

S.CWS P_ 5_D0 P L R_ S_DO P_ S_I AIL- 5_<? 17

iSLCWSPJSJDO PI ICS_D Ml

S.SDPQ

WSP_

isM3
CUJCD

S.MEADE

|1E pUUAJzl

!5_CW5P_

5_CWSP_

r
!5_CWSF_

Figure 36. Partition P_CWS_3F

D-21

;'5L.CWStSlCSPEIX.K.3LPIHQ

:!;5ueWSP_S_CSPEt_5_OtoFC

j;öATHEP.EQ_0UTPUL:1

SLCWSP_5CCSPE(SKtePimO

S_W5P

FM
SLEWS P

5.CWSP

[s_CWSP

;cwsp_s_csPEC.r_a_prRio t^, ,w
ÜL.CW5P

5.CW5P

Figure 37. Partition P_CWS_4

: s_cwsp_sjrn;iGTfSPEq

jS2ÖMP,XCSPEC_SjrFllG_AW

, GATHERED OUTPUT

| J>_L"<SP_

, S_CWSPfS_CSPEC^S_TRIG_SB| !§ e$SJ&i

S CWSP_S_AW

S QVSP-S_SB'

tJXISPj

i!wr|

8-SQNF

Figure 38. Partition P_CWS_4A

D-22

JILCWS^ S_CWSP_S_CSPEC_S_XÖ

S_CW5l 5_CWSP_S_C5PEC_5_XC

StCVVS P_SCC SP EC^SLJEWT

5 CWSP

CWSP

S_WAOMA

Figure 39. Partition P_CWS_4B

S_CWL P_ 5_CVMN_ 5_ EWC

SLCWL P_ S_CW_CCNi 1

5_C WL P_ 5_CWM_ 5_ Kill KQ

GATHEREOJNPUt:!.

S_CWLP_

I'JfLCWLP.

|S_CWLP_

Figure 40. Partition P_CWLIN_1

D-23

0ATHEREDJNPUL.1

>5_CWL P_ SLCWI1C SL.CNT2

ZJ2M. P_ SjCVAjt S_ R S E L

I S_CWLP_

SiCWL Pi SLCWH.SL RTO

Figure 41. Partition P_CWLIN_2

S_CWLP_5_CWN_S.

S_CWL P_S_CWM_ 5_;ST RT
, S_CWLP_S_CWI^_S_DUMl

5_CWL P^SJöWNl'SjBTTO^

SLCWLP_5:RTD

S_CWLP_S_CWf4_5_5D 5£CWL P_ 5_CWN_ 5K EWC

S_C WL P_ 5_CWN_S_NXTR

S.CWl P_ 5_CWH_ S_C LC K

S_CWL P_ S_CVVIN_ 5_ M P.GQ

_S_CWL P-S_CWI>U S_DN XTI

S^C WL prs_c WN_ 5_DU M

5_C WL P_ SLCWtCS^ R S E L",

S_CWL P_ S_CW1H_ S_ RT RO

)S_AQU

S_LRAQ

Figure 42. Partition P_CWLIN_3

D-24

S_C WL P_ S_CVWfL S_ RTG

S_CWLP_S_CWN_S_LOOP

i SÜCWL P_S_CWIN_5_NXTR

5_CWL P_ S_C <MH_ 5_ PT P.Ö

uREPRO

§_£WL p_5j;WH.CT RÖ2

Figure 43. Partition P_CWLIN_3B

!=JS:"':eWl:P ■ "S CWIN SlETRG SZCWßPS©~WlK_;S£EWCS

Figure 44. Partition P_CWLIN_3C

D-25

S GWLP S CWIN'S ETRG S CWLR^S^CWIN IS :EWCS

Figure 45. Partition P_CWLIN_3D

5_CWLP_S_CWIN_S_ESZ\ <5ATHERED_INPUT_I

S_CWLP_S_CWN_S_ENXT

S_CWLP_S_cttll£slTRe2

IP-

*-C»**-

Figure 46. Partition P_CWLIN_3E

D-26

S_CWL P_ S_C \MN_ S_ EWQ

5LCWL P_ SLC W\N_ 5_N PI

5_CVVL P_ 5_CWIN_ S_ EWB S

SLCVVL P^ S^CWIICS^ EW12

S_CWL

I S_CVrL

S_CWL

■ S_CWL

TOM

= 5_CWL

S_CWL

S_CWL

S_CVYL P_ S_CWIN_ S_ E WFKJ

SLC\VLP_SLCVVIJhL5_EWRT -■

S^CWL P_ SQCWINJIL PÖQ

(5_CWL P^ SLICWINL SL EV^CT

GATHEREDLOUTPU|_1

WLPSS&eW1K_SL:EWDS

Figure 47. Partition P_CWLIN_4

D-27

llP_5_CmN_5_5C1

Figure 48. Partition P_CWLIN_5

5_CWl P_ S_CW1N_ S_MU XQ

S_tCOA

S_CWL P_ S_CWH_ S_MU XT

S_CWL P_S_CWI>L S_ EWMQ

0ATHEP.ED_0UTPUT_2

S_CWLP_S_CVW_S_SIs.cwipy S_CWLP_S_CV,1N_S_ZQ

1&.CWL P^ StCWN- S_22

P-CAR

'JSH

S_CWL

SUMP»!

TUMP

D_REP I
S_CWL Pf S_CWLP_S_CWK.5_0ltlMQ

S_CWL p_s_cwrt. s_o p w

S^CWLPiS_0PW5"

Figure 49. Partition P_CWLIN_5B

D-28

iSLCWLf>_S_CWN_SLSC3

GATHEREDLOUTPirCt

-CWIP_

5_CWLP_

S_CVLP_

Figure 50. Partition P_CWLIN_6

OATH EREDJN PUT.

SLCWtPlSLCNCt"

S^CWLP_S_CLHD

S_CWLP_

S.CWLP.

S.CWLPJ

Figure 51. Partition P_CWLIN_7

D-29

5LCWLPJ5_qiHD

s^ewieSsLOMi

S_LCLQ

• 5.mi>.

i-cwip.j

5_CWP_

-""-■-

S.HEADE

.ITVPE

= S_W.SZ

Figure 52. Partition P_CWLIN_7A

: S CWlP :S CWIN .SJS

IS_CWLP_S_qW|NIS_SC3

S CWLPJ 1

,, S_CWLP_

S_CWLP_

15 CWLPJ

Figure 53. Partition P_CWLIN_8

D-30

: SLCWL PL SLASCAN_ SLA5CH_ 5_X2

\ 5_CWL j
\ ■ /

5_C WL P_ S_ A SC AK. S_ A SCK. S_ X 3

GATHERE0_OUTPUT_J

|S_A5W

s_ewi

isjamt.

lllliil
:S_LPB

Figure 54. Partition P_CWL_1

sGATHERECüNPUT_1

5_CWL P_ S_WAI E R_ S_WFA L L S_ X j p

5_C^VLP_S_CNWF

;S_CWL 5_CWL

J5-CWL

'S.CWL

I S_CWL

S_CWL

S_CWL

S-CWL

fgTewC

-S_CWL

5-UV

litlli

5_PBIN

Figure 55. Partition P_CWL_1A

D-31

S_CMP_S_WATER_S_WFALL_5_X10

S_CWLP_S_W«EF_.S_WFALL_S_X11

S_CWLP_5_WATER.S_WFALL_S_Xi2l

(D.lf)
1 -CW.J

jS_CWlP_S_WATER_S_WFALtwi.X12A|

.5_CWLJ

S_CWL P_S_WAT ER_5_WFA L L_ SiX 1 3

5_CWLP_S_PHWF

:S_CWLJ 5_CWLP_S_WATER_S_WFALL_S_TAIL_S_X16I S.CWL

|s_CWLP_5_WATER_S_WFALl_S_TAIL_S_Q17

:: S_CWLP_5_tmTEFL5_WFALL_:5_TA1L_:S_X15i;

5B0R

5.CWL

S.CWL

pLcm

1L.CM;

g§Hi EOS

1HÜI

/MÜH

s_Iiv"

HI
fc>'8W

BUM
ill
S_CWL

fS-CWl'

S.CWl

■___Ü!

■Üi"

Figure 56. Partition P_CWL_1B

}S_CWLP_S_eNOP
OAtHEftEDCINPUIil:::

f5iCWLP_S.DOPLifC5_DOP_S.X8

U 3-CWlP_ _:
S_CWLP_ S_CWLP_

;!:|LCWLP_ S_ITYPE

 .5_P-*tC

S_CWIP_;

LCWP, 5.

__£!

S-CWLP_

iS_-WlP_

_■■ ___=.
LCW-P_

i
|is_->äi>_

S.CWLP,

Figure 57. Partition P_CWL_1C

D-32

;S_:CWL P_ S_DO P L R_ S_00 P_X.X8

S_CWIP_S_SDl5_CWli

5_CWtP_:S_DOPl.R_5LDOP_S^X9

: 5_CWLP_S_DOPlR_5_DOP_S_TAIlw5_X15

S_CWLP_5_PHDP

5-CWL P_ S_D0 P L R_S_D0 FJ4.T Al 135SX16

S.CWl P_ S_D0 P L R_ S_D0 P_ S.TAI L 5_Q 17

iS.CWl?_3L

L—\sjcwU

■S*tBPQ

.CWL

-—
mi

5_CWL

S_CWL im
HüH

■ BMI

'S-CWL S.PBIN

D0Pl^S-OM,
r-XWi ^^ ^^

S.CWL

M
sJHUI

S.CWL

S_CWL

Figure 58. Partition P_CWL_1D

D-33

SLCWL P_ 5IA SCANL5SLASGN_SL X6

^CWLEiSüASiAM^ASCtLSLX?

SLCWL P_ S_A SCAN_S2ASCM3S^. X8

fLCWL P_ SLA SCAN_ SLA SCKiSlK?

Ll
.CWLPj

SUCWL P_ SLA5CANJ5- * SCN_ 5_ X1Ö

; SLCWL P_ S_A SCAK. SL.ASCN_ SLX1J

SLCWL P_ SLASC AN_ 5_* gCN_ S_ X12

5LCWL P_ SL A SG AN_ SL D hi 1

5_A5G

S_CWL

5_CWL

S_CWL

5.CWL

SLCWL

^S_CWL

■ 5_CWL

5_CWL

B-CWL

. S_CWL

.slpLCWL

::|5_CWL

5_CWL
■

|5_HEA

?|S_LPB

IS^LTVP

5_UAS

Figure 59. Partition P_CWL_1E

D-34

■ SiCWLPL 5_ASCAI>lIXA SCHjäL W

: S_CWLf>_SLA SCA(ß5_A SCIt5iX6

CWLP^OSeAhLSLASCfCäBXS "

- ■ -

~ ~

5LCWIPJ

! !
S_LPB

Figure 60. Partition P_CWL_1F

s_cwLP_s_qpws

'S-CWtpJSaSMPO

ISLURAQ

S_CWLP_S_SMPI

:.s_cwi [s_cwi I S_CWL

UCWL

-cwü ?s_c

55a Bsai wm
Lcwü

55» fee»!
Rä^i RUH
pfetew; lauere'

i [5_CiVU S_CWt

S-CWL |S_CWL

5_CWL

15_CWL 'S_CWL

Figure 61. Partition P_CWL_1K

D-35

SSLCWIP.SJSO' 5_CWLP_S_BR0F : S^CWLlyS.BROC

S_CWLP_S_BEAP_S_BEAR1.ÖN6_S_X2

S_CWLP_S_BEAR_5_BEARL0Nö_S_X1

^:i''i J_CWLP_ÖEA%^BEAlalbNt5-X3

^CWIP_S_BEA.R_5_BEAR1.0N0_S_X5

'5_CWIP_SVBRCN

5_CWLP_S_PHBR ::

 j£cAfc
CWLP_S_BEAR_5_eEARlON6.S_TAIL5_X16lv S_C'iVj

S_OWLP_S_BEAR_5_BEARLONO_5_TAICS_K1 S

SJ;*fciBEAR_S.eEARL0NCLSLTAIL.J.Q17

S_CWl.P_5_8EAR_S_Dtllt|

'< S_CmP_SLBEAtSUBEARlONct:£ii7

■t^Rltfj S_tBRQ

5_CWLP_S_BEAP_5_BEARLONO_5_X6A

CWL P_ 5_ B EA R_ 5_ B EA R LONG. 5_ XS1S.CWI

S_C»LP_S_BRCC

Figure 62. Partition P_CWL_1L

: 5_CWtP_S_ASM

!jeAlHERED_OUTPUI_3

(PV"S|

S_CWL P_ !S_Äf CAN!IS_ASCI>_ 5- VJM,

S.CWl P_ 5_A 5CAN_ S_ UI v\

S_CWLP_5_ASCAN_S_ASCN_5_inUl/

PAN1N

I5.CW.P_;

JöATHEREDüNPUT.

:::JS_CWL PJS_AUDI0_S_CN1

:::6AIHERlEa:0UtPUT_1

| 3.CARa

:5LCWLP_

«5
i-CWlP_

'SLCWIP.

:S_CWLP_

s

: OATHERED_0UIPUI_2l

^P_

LCWLP.

?|SLLPB

Figure 63. Partition P_CWL_2

D-36

SLCWLR; SL.AUDIOU 5^ FLT

SLCWLP»5LAUDI035_;

S_CWL P_ SL AUDIOES. 5 UCg_TRIG

5_C WL P_ 5_AUDIO_ 5_C P X

S_C WL P_ S_ AUDIO_ S_l FFQ-'

^CWL P_ 5^AUDlq_5_AGCQ

5_eWL P_ S_ AUDIO_ S_ FG AU
^LCWL P_ 5_AUDIO_ S_C Aul
S_C WL P_ 5_AUDIO_ S_ ACNT

SiCWLP_ SLAUDIO_ S^D LAV

jSLCWLP_5_AUDIO_ ?UNTQ

SL.CWL P_ SLAUDIOLSiiDMCQ

SULAUQ

SLCWLP_K.AUDICeSLNOTCHW

SLG WL PLS-AUDIpj SL.NOTG^TRIG

3R .5_LAU

LAGT f/JäLlfpl

PTA

iLC S.CWt

S EcwT
S_ALO S_CWL

:-5_CWL

5.CWL

-AUD -S_CWL

■ 5_CWL 5_CWL

jQjjga ts_CWL

1 .S_CWL

s rwi CWL 5LCWL

S_CWL 5_CWL

5-CWL 5_CWL

■SLCWL ,S_CWL

5_CWL

WM gscwg
_CWL

SLCWü T5wT

|5_CWL

Figure 64. Partition P_CWL_2B

D-37

5_CH>LP_S^CI>IEAN^S_CMIN ^5_CWLP.

• s!£wiPJ5_CMEAt€,S.CI

«SiCWLP.S^CDFN

0_RCP ^ S_CWLP_S_CMEAM_5_FMIH
IS.CWLP

ij'g.CWl P_S_CM E AN_S^SPQ

GATHERED_0UTPUr_2

JLCWLPjSCCMEAItSLfNE

D 5P1 VCWLP_S_CMEAHC5_StlltT|
I c O.LTB r S-CWLP_S_CMEAN.Sic
^S_CWLP_J 5_CWLP_5_Cti1EAlC5_R|

^^ S_CWLP_5_CMEAttS_CP

:"S£'i- 5_CWLP^5_CMEAH_5_EMNT

GATHERE0_0UTPUT_3 ,

S.CWLE [S_CWLP

SL-CWLP ISLCWLP

'.S.CWLP XLMBF

5-CWLP 5.L1IPF

s.inipi

.:""i'

Pi?'
S_CWLP

[sLCWIP

5-CWLP

5-CWLP

Figure 65. Partition P_CWL_3

S_CH>LP_S_NMCR

rS_CWLP_fLNMEAM_S4CMIN

S_CWLP_S_NMEAN_53P0

5_CWtP_S_N|11EAN.S_CRS

S^CWIRXSLNMFN

f 0 REP
1S_"CWIPL!-CWLP-5-NMEAN-5-FNE

: QATHERED3UTPUÜ|ATHERED3UTPUT_1

v5ICWLP_SLNMEAN;S^rMIN

5_CWLP_S.NMEAK.S_5lltLT
S_CWLP_5_NMEAN_5XCpW Ö.MET-'

S_CWLP_5_N1»IEAN_S_CPL~—ls_CWlP
:'K:::s:sSuCWLP_S_NMEAI>LSXR ' :™™s»iJ

:;S_CWLP_5_NMEAhLS_FMNI ATHERED_OUTPyU3

Figure 66. Partition P_CWL_3A

D-38

H S_CWtP_S_CMEAtOLHj«r |Q5CWiP_5_CMEAN_S_lOB9 l

LCWLP_5_CM£AN_S_FP 58

^_cmp_SLCMEAIC S_ rw)

5_^P_'S_CMEA^S_CfrBN MMj

 S_CWLP_S_ASM ^-^

:5_CWIP_S_CM&M'L 5L.WPQ

pWt !LCME«<.S_UNWF

S_CWLP_5_C M EAN_ 5_CCM

Figure 67. Partition P_CWL_3B

< iLCWLP_i.Nti1EAN_5.FP58

; 5_CWtP_5_N M EAN_ 5_l

5_CWIP_5_H M EAN_S_WR3

6 S_CWtP_S_N M EAN_ 5_<JNVW

: GATHER ED_0ÜTPUT_1

Figure 68. Partition P_CWL_3C

D-39

5_CWIP_S_TRI0_;5PEC

::::5_CH>LP_S_TRI__SPEC_.;

i5_CWlP_5_F5PEC_S_q2

.CWLP___FSPEC_-_Qi

. grAcWlP_S_r5PEC_S_i;iJ

jjiis,cM*.ffc:rsppi?SQ4'

■s_ctMp_'s_Fs>E'c_l_Qi

gs.ciw.pi

ESS?

S.CWIP.S.CSPEC.S.QS

:P_5_CSPEC_S._Q3;

.CWIP-5_C:SPEC_S_Q|

5-pWLPJS_CSPEC_S_Q4 4-g—A

Figure 69. Partition P_CWL_4

IS.WLP_SLCSPEQ.S_QS'

;S_cmp_s_cspEc_5_BEpg

S_CWIP_S_C5PEC_S_PW)!

5_CWIP_S_CSPEC_S_RINT

S_CWLP_5_0CSC

 '::':i;S-CÄ:p_SÖi-J>EC_SJ3<!

:::S_CWl P_ S_C S P EC1S_0 M FC

S_CWLP_S_CSPEC_S_SCFCT^JEmH»;

:;!jOAIHEREB_OUIPUt_1

:s!g^P.s.Nsp^«_^*L^«^^;, ^.::,.,;,;:S.CWLP.S.NSPC3I_^--- p_CMOt

s_ewu>_s_ospc lJI_Äl ELCMPT

tS_CWLP_S_CSPEC_S_i(C

:5_CWL;P_5_C5PEC_S_(

: ::S_CWLP_S_CSPEC|5_X5

3_CWtP_

.CWLP_5_ESPC §§j

1-_MBN|

Figure 70. Partition P_CWL_4A

D-40

LCAUB

IS-lCWtPlS-rSPECS-qsN /SLCWtP.S.ÖCSF ,

:5_CWlPr5_rSPECj5ZW, ;> :Ts_CWLP_Sib5l>r

s_cwiPl^rspEc^O!j|rc

5_CM.P.;5_FSPEC_S_SCFC

: OHHEBEDZOUtPUt.

iS.CWIP.

S_CWLP_ä_rSPEe_5_Ql\

■■-■■ ^ VSLCWLP_l.E5P.Fj::;.;:::|.;i:::;. '"

:,:sucwLp_5yspECjssxs js;cwip_s_FäPEcs:S2i«;
fccvvt>i

S.PftMf

5.FBIMF

Figure 71. Partition P_CWL_4B

«StCWlP_SLCSPECL.SLXO
S_CWLP_i

5_CWLPj

^

|LP-

5JBINC

Figure 72. Partition P_CWL_4C

D-41

S_CWLP_5_FSPEC_S_RINT

S_CWL P_ 5^ F5 P EC^ S^CITp

S_CWL P_ S_ FS P ECi S_«OC

S_CWLP_S_FSPEC_S_NS(?

S_CWLP_S_FSP.ECLS_EWr

S_CWLP_S_FSPECJS_KlS!t

■ 5_CWLP_

S-CWLP_

SLCWLP,

S-CWLI>-

■

S-IWINT

_P8WF

Figure 73. Partition P_CWL_4D

GAJHERED^INPUri:
8 CWMP s QWM'öWC

S_CWMP_S_CWIN_S_CNT1

S_CWMP^S_CWIN_S_MUS3

.S.CWMPJ

!S_CWMP_

6 CWMP;

S_CWMP_

Figure 74. Partition P_CWMIN_1

D-42

g_CWMP_S_CWIN_;SIRSEL

■GATHERED INPUTM

isjrwMP^cWiiOIcKIS

S CWMP_S:'CWIN S RTG

Figure 75. Partition P_CWMIN_2

S_CWMP_ S_CVMN_ S_NXT R\
S_CWM P_ S_Ctt*J_ 5. RT RO/

SLCVVM P_S_CWlCSiC LCK

S_CWMP_S_CWI>LS_ETRO

:5_CWIrl P_ S_CWN_ S_DN XT

S_CWMP_S_CW«L5_RSEL/LWRA^ 5_CWMP_S_«WCS_EWC

S_CWM P_ S_C WN_ S_DT Re

SlCM(P_S_ttMiffi^MRG<3 ^
S_CWM P_S_CWM_ S_DUltl

S.CWtll P_ S_CWN_ S_ ST RT
S^CWM P_ S_b WN_S_DU M MV

S_CWMP_S_RTD

S^CWM P_ SIC WK. S3D fUoUT

L.REPR

Figure 76. Partition P_CWMIN_3

D-43

J5JCWIHR_S^CWL5LRTO

S_C,,VMP_S_C,A1N_S_L00P

sjcwar_ s_cwiN_si.i>i;ft6

S.REPRO

S_CWMP_S:C™N_S_TRÖ2/ \S_CWMP_S_CW1K-S_NXm

Figure 77. Partition P_CWMIN_3B

: s_cwMP_s_cwn_s_El

; 4ÄMP_5_C*L5_ETRG

äCATHEREDL-OUIPÜTSl s-"""0

Figure 78. Partition P_CWMIN_3C

D-44

S_CWMI

S_CWM P_S_CWII>CS_TI ME

s OATHERE0LOUTRUT_1

JS£CWMPL^.CWN_53SA
QAtHERED!_üUTPUfö2

;

S_CWMPW

M

S_REPRO

Figure 79. Partition P_CWMIN_3D

S.CVVM P_ S.CWIM. 5_ E S 2

ÖATHERED\|NPUT_1

l5_CWMP_SLCWIfC5-ENXT

S.CV^M P_ S_CWN_ S_ E WPG

S_CWM P_ 5_CW(«L5_I RG2

Figure 80. Partition P_CWMIN_3E

D-45

S_CWM P_ S_CVWN_ s_ EwgJ,

5_C WM P_ S_CVV1N_ S_N P EV

S_CWM P_ S_C WM_ S_ EVVB S

5_CWMP

5_CWM P_ S_CWK_ S_ E Wl 2

CLF1R1S
LS_CWMP_
V y

v^cvm P_ SLCWIN_ SL EWPQ

5_CWMP

5_CWMP

;S_CWMP
t ...

;S_CWMP

5_CWMP

_S_CVVMP

■5_CWMP

_CWMP

S_CWMP

D_REP
\S_CWM PJ S_C WM P_ S_CVMN_ S_ EWRT

5_CWM P_ S_CWIN_ S_ PÖQ

5_CWM P_ 5_CYHN_ S_ EWCT
DLDMUX'

5_CWM P_ S_CW1N_ S_ EWC S

iGATHEREDLOUTPUfell
S_MC10

JATHEF

Figure 81. Partition P_CWMIN_4

D-46

!;SjaVll1(>_5_CW1HC5-N5IH9

I: S-CWMI>_5_CWN_5uNST<}

1 S_CO

S_CWMP_S_NSPF/

Figure 82. Partition P_CWMIN_5

D-47

; :5_CWMP^5_CttlN_S_l)tUl<Q

I S.CARD

S-ce

'jfUsm»-

-CWMP

ill ICWWP

5-CWWP

S_CWB1P

PPO

|5_«IMPP

CWMP_:5^O;PWS

Figure 83. Partition P_CWMIN_5B

ISCWMP S_eWIN_S_SC3

[REP

.%W

|S_CWMP_

|CWMP_

GATHEREP_0ÜTRÜ11il

(GATHER I

Figure 84. Partition P_CWMIN_6

D-48

■;GATHEREDJNPüT_I

S-CWMP_S_CLHD

.S_CWMP_S_CNCL

LCWMPJ

„CWMPj

HaM

Figure 85. Partition P_CWMIN_7

i CWMP^Sj^Ll-iD

SCWMP S Dffil

————
•MP_

*MP_

r.
:CWMP_

I 1

HEADET

iMTVPE

S_VASZ

Figure 86. Partition P_CWMIN_7A

D-49

: GATHEREDJNPÜTJ

IS CWMP S CWIN S::SC3

Figure 87. Partition P_CWMIN_8

S_CWM p_ 5_ A SCAN. S_ A SCR. S_ X2

isSLCWMPL. 5^A5CAN_SiASeN_ SJX3

P-SPl

S_CWMP_

J»-CWMP_

Tc^S

^P

;J|jAtHEREDC0UTPUU11 S.MPB

Figure 88. Partition P_CWM_1

D-50

J5_CWMP_Si_CNH>F

iICWM!LSHWrEILS.WFAU2MlP

E'33 .BE

(.PMiC

5.CWMP. 5_P8INCf

S_CWMP_

5.CWMP.

Figure 89. Partition P_CWM_1A

iS-CWMP-SSPHWF

SLCWMP_SL.^fE^^WWLÜ5^All_5LQi77 '

S_CWMP_S_WATER_S_DM1

S.MWFQ

S_CWMP_S2WATEP^5_WFlS.I.UiS_TAieS^X16

S_CWM P_ S_WAT E ft_ S_WFA L L- 5_X 10

/ojf
\5_C

S_CWM P_ S_WAT E R_ S_WFA L L 5_ X11

CLLOO!

NT

S.CWM P_ S.WAT E R_ S_WFA L L S_ X12

;sICWMPr~

S;CWMP_S_WATER_S_WFALLS_X12A

5. CWM P S_WAI E RZ S_WFA L L_ 5_ X13

J$k<3 SLCWMP_i5£W,TER.S-WFAi:C5-TAIla5LX15. "-*■*-"

Figure 90. Partition P_CWM_1B

D-51

:S_CWMP_SJ0PLPjSiOOP_S_TML5_<)i7,

WSr£WMP_SJXiPlt!_S_DM

5_CWIllP^S_DOPl.fLä-O0P3^«S

r—-) "S.CWMP.S.SO li-CWMP.

■p^?T^^^,^^i^p;^LDö»^i

S_CWMP_S_D0PIR_S_00P_S_TAIUS-X15

■ S-CWMP,

IsLcwnp. 's-cwmp_

.S.CWBIL

■ ÜH2

S.CWMP. S.P«WCF

S-CWW- S_PM«

liail 1
^<^ ggg

Figure 91. Partition P_CWM_1C

GATHERED_INPUr_ S_CWNP_S_CNDP

5.CWM P. 5.D0 PI H_ S.DO P. S_ X8

S_CSVMP_ S_CWMP_

.CWMP^ 5.CWMP.

fsLCWMP. 5.MTVPE

SP*weS jjM
%
M^ team.
S_CWMP_ ISLCWMP.

^JSBB

S_CWMP_ >j PWUP.

fe.cww»„

Figure 92. Partition P_CWM_1D

D-52

rs_cv

5_CWM PL SU.ASCAE.Si_A SCN_. SLi X€

□LREORl
tS_CWMPj

S.CVYM P_ 5_A SCAN_ S_A 5CN_ S_ X7|

D_FFT
LS.CWMPj

S_CWM P_ 5_A SCAN_ S_A SCN_ S_ K8

D_F

5_CWM P_ 5_ASCAN_ S_A SCNJ5_ X9

D_LOG
.S_CWMPJ

SLCWM Pj5_A 5CAN_ 5_ASCN_ S_ X10

LS_CWMPJ

SUCWM P_ SLASCAH. 5_ASCN_ S_|X 11

.RTOI
.S_CWMPJ

S_CWtll PUS_ A SCAMS5_A 5CN_ S_ XI2

S_CWM P_ S_A SCAN_ 5_D M1

S_ASG

l5_CWM

S_CWM

■ S_CWM

1 S_CWM

S_CWM

|S_CWM

S_CSYM

J S_CWM

S_CWM

S_CWM

SCVVM

S_!

5_CWM

S_HEA

S_MPB

'5_MTVP

S_LIAS

Figure 93. Partition P_CWM_1E

D-53

:;:S_CWMP«S_ASCAN2S_>.SCN_SIX5

8* CWMP2SmSGAN3SJ'vSCN_SJ<6

,SaGWMP_SVÄSCÄMlS_ÄSCN_S_X4

•S_CV7MP

r LCWMP;

:S_CWMP

^U^PBII

Figure 94. Partition P_CWM_1F

: S_CWMP_S_OPtVS

5 5_CWMP_S_SMP0

D.5EP
{S.ZWttP_tj

|S^CWMP_ 'BM—'

Iffl&I |&y«^ gj&fegj

ayawJ jmwwRl. i£cw-M''l

|LCWMP_: [S-CWMP_ {afowja

iS_QWMP^SL.SIl1PI

IS-CWW,>- YIP_ S.CWMP.

SiMR*0:J
;WMP_ jFB "*"»- :S1CWMP- ^MM"

-CWWP, |s_CWMP_ iS-i

.CWMp; j |S.CWWP_

§LCWMP_ [5_CWMP_

S.:WMP_ |s_CWMP_

,Se.CWMP.j j&CWWft,

::5_CWMPj _ |S.CW«!P_

Figure 95. Partition P_CWM_1K

D-54

S-CWMPISLPHBRT

^Sj;WlllP_5LBEA^5^B^Rl0N0jO^'^0itÄ!;t:

S_CWMP_S_BEAR_S_DM1

5LCWMP_OEAR_CBEARlÖNC^TA)L^5g<16

S_CWMP_5_BEAR_S_BEARL0NG_S_l<f

BSU^WMP-OeAPwSLBEARtONC^SLK?

|S.CWM«]i^VMP_5.eEAR_S_eEAElOHO_S_IAIL5_Xlt5^CWM(

Figure 96. Partition P_CWM_1L

GATHEREOJINPUT.

ftSLCWM P_5_AU0I0_S_CNT

f_CWMP_S_AS

äOAIHERECLOUrPOlg:

0ATHEREDL0ÜTPU13-

LCWMPTSIA!5CAI>L5_U1.U

5.ASEL

SLCWMP. | SLCARg

■IICWMPI ;

.5_CWMP_

S-CWa'-

Lcwap.

S.CWMP.

Figure 97. Partition P_CWM_2

D-55

5_CWM P_ S_AUDIO_S_ FLT

5_CWM P_5_AUDI0u S^-FFII

S_CWMP_S_AÜDIO_S_CPX

95.CWM P_ S_AUDIQ_ 5.

S_CWM P_ 5_AUDIO_ S_AGCQ

S_CWMP_S_AUDIO
5£CWMP^5_AUDIO_
S_CWMP_S_AUDIO_

_S_GAU
SLAfcWfr
S_FGAUL

-—/D_AOC
 \S_CWM

5_CWMP_S_AU0I0_ 5_DLAv|

\S_CWM

S_CWMP_ S_AUDIO _S_IWTQ[

\S_CWW

S_CWMP_S .AUDIO! 5_DMCo|

/D„RTOr

5-CW s_CW S_AOR 5_h

S-CW :5_CW 5_AOT " 5_PP;

■Mjsm fgfcjj l^tc lOfg

5_CWM P_ S_AUDIQ!5_S LIC ELT RIG
~~- S_CWMP_S_AUDIO_S_NOTCHW

5-CW 5_CW 5_ALC Xcw!

5-CW S_CW 5_ALO SLCW

53a y^Pi (S£*RJ EjEjowi
UM EEÜ HSU mi
fe^i Pi^ IS-ftPS Füg
Sisal FS35F IHe^ ggcg

■SSI tslfcw

Figure 98. Partition P_CWM_2B

D-56

,5_CWMP_S_CMEAN_S_rMIN

>fcCWMP_S_CMEA^5._5MLT|
5.CWM P_SC M EAN_ S_C

S^S-CWMP.S-CMEAlCCRl
S_CWMP_5_CMEAI>_S_CP

5_CWMP_5_CMEAN_SvFMI>* MHERECLOUTPUt.^

jtewwij ßJWW

jS.CWWP

S.CWWP |s_CWWP

'"
SüB»» js_cw»p

jgjBj ggigg

SJSWMP_5_CMEA*tS_FNE

;SS5-CWMP2iL.CMEAI

CWMP_S_CMEAt1_5_SPQ jS-CWMP ,S_«MPF

i may
LCWMP

mm.
LCWMP ...WHIP

S.CWWP

Figure 99. Partition P_CWM_3

:? :S_CWMP_S_NMEANLS_CP
S_CWMP_S_NMEAN_S_C|
S_CWMP_S_NMEAN_S_R|

EfcCWMP_SL.NMEAK.5L.5MLI

S_CWMP_S_NMEAN_5^FMNT

IfcCWMP.S^NMFN

S_CWMP_S_NMEAN S.FIillN,

vS4CH|MP_S_NMCR

S.CWM P. S_N M EAN_ 5_ S PO

|0ATHEREp_OUIPUT_3:

OAIH E RECilÖUI PU1_2|

1&.CWW js_cw«

Emm ______
.mil

Mam Htm*
:,g___t WJm :

Hü wm
_■■
{SLOW«

155
EW J55B

Figure 100. Partition P_CWM_3A

D-57

5_CWM P_;S_Ch1EAM_SLU<jBQ

15-CWW P_ SUN M EAH. 5_fMNT

SS_CWMP_5_N M EAN_5_FMNI

Figure 101. Partition P_CWM_3B
5„CWWP„ gLNMEAtCS^LKJBg

t 5_CWMP_5_6RCN

f 5_CWMP_SLPHCN

SJCWKK 5„N MEAf<L5-C LI

5.CWM P_ SLN M EAN_5_N?

.CWM P_ S_N MEAN_iLfMN

SJCVM P_5,NM EAtj. S- PC BB

Figure 102. Partition P_CWM_3C

D-58

S_*SCAN 5.CWMP.

öATHEREDJNPÜUl 'ii: 0ATHERE^INPUT_1

laOATHEREOuOUrpUO ijJjATHEREDfCoUtpÜJB

S_CWHP_

L.CWMP.

\i.cm<K 5 CWMP

jS_CWHP_

^">-

IS-CWSf. 1
-s-™11"'-

[f-CWMP_

<MP

Figure 103. Partition P_CWM_3D

SLCWM P_5iT RIÖ25PEC

5_CWmP_Sr.TRI0_SPEC_1

SLCWMP.S^CSPEGJSLIRICLSB

SLCWM P.S^C S P ECS2I RIGC*W

GATHERED.OUTPUT.

D-59

Figure 104. Partition P_CWM_4

; S_CWMP_S_CSPEC_F_5_PTP/oy S_CWIJP_5_0CSCN

tCW«P_S_OSPC\ / S_CWMP_5_CS\EC_F_4_PTRIO/

:|:S_CWIllP_S.CSPEC.S.OtllFC

S_CWMP_S_CSPEC2F_1_P|PJp

0ATHERED_0UTPUT_1

SXCWMP_i.CSPEC_5i

5_CW>MP_S_NSPC

5_CA.Roe

|JCWMP_

5_CWMP_S_ESPC S_CWMP_

IZ~> S.CWM*

,S_CWMF_

5_CWMP_

• S-DBINC

| 5.PBINC

SLCWMPL;fcCSPEq_F_Ä_PTraO

S_CWMP_SiCSPEC_S_SC

Figure 105. Partition P_CWM_4A

D-60

5_CW»1P_5I0äP
S_CWMP_S_F5PECjF_i

S_CW>(|1P_S_FSPEC_5_0MFC

GATHEREOLOUTPUO

Ulli

ll-CWMP,

[S_CWMP_

CWM»'

Figure 106. Partition P_CWM_4B

. S_CWMP_S_CSPEC_S_X5'

S_CWMP_S_CSPI

S_CWMP_S.

S^0WMP_5_FSPEC_S_

S.CWMP3S.F5!
5_CWMP_£.FSPEC_5_XS

CWIrtP_S_CSPEC_5_XC

S_CWMP_S_CSPEC_S_EWiT/ \S_CWMP_5_CSPEC_5_NSIf

5_CWMP_5_BRÖC |i5_CWMP_S_N(rlFNl

Ü i.C!V«1l_

5_CWWP_

OtNC

5-DSMT

:tOWMP.S_F5PEC_S.N5IT/ ; ■»: ;:;;7sSiwMI>-S2FSPECL.5LEfflT b s_0Br

S_-AO«A

3_P-iNCS

J_PNNF

5_cwmp_s_BRöF

Figure 107. Partition P_CWM_4C

D-61

:.OATHEP.ED_WPUT.

S_ridF>_S.ASCAlCSS33

SLFMP.;S_ASCAM.SJFF<3

FMPiSiASCAKLSlCDPH tSLFWPlSJ

S-FMP.S

illlll

5;FMP_5_ÄS»N.5_RECQ^JSI?

» . ^r,!!!P_S_A5CAHL5i_|WtQ

f.F«P-S

Figure 108. Partition P_FMASCAN_1

S_FMP_S_COAS iÄ-FfilR-SLÖMAS

!:0ATMEREDiipUTPUC1 i
DLFIOC

S_FMP_S_ASCAN_S_01l

PlSU^lLFMP.S^ASCAHLF^IiFFJIJ

5_ FM P_ S_ A 5CAH.F-*-FSf Q

S_FMP_5_ASCAN_S_HW

O.P.EP
-FMP_

S_FMP_S_ASCAiCS_(32

O.P.EP

S_FMP_5_ASpAN_SJNDS<<J

SLASei

S-CAB"
iS.CAROB

S_FKP_5

|§iw_#

5 FMP 5

RSq

:: S_FMPiS^ASCAN_5LIJ3

Figure 109. Partition P_FMASCAN_1A

D-62

5_FMBF

5_ FM P_ 5_A SC AN_ S_ PWRQ
i

D_PWR
lS_FMP_<

5_ FM P_ 5_A 5CAN_ S_ PWRO
l

DJNDX

S_ FM P_ S_ A SCAN. S_ S E PQ

DLSEP
„FMP_5J

S_ FM P_ S_ A SC AN_ S_ADQ 1

D_UADD
15_FMP_S_J

MöPMJ

S_FMP_

■'xmB

S_FMP_.

S_FMP_

5_FMP_

5-FMPj

5_FMP_

5_FMP_

S_FMP_

S_FI

! 5.FMP

S_ FM P_ S_A SCAN_ S_ R E PQ

D_REP
S_ FM P_ S_A SCAN_ S_UNNQ I S_ FM P_ S_

S_ FM P_ S_A SCAM- S_ M ETQ

S_ FM P_ S_ A SC AN_ S_C
5_ FM P_ S_ A SC AM_ S_C P

5_FMP_S_ASCAM_S_RJ

S_ FM P_ S_A SC AN_ S_ S M LT

S_ FM P_ S_A SCAN_ S_ M EAN

S_FMPF

! S_FMPI!

Figure 110. Partition P_FMASCAN_2

D-63

5_ FM P_ S_lA 5C AlC 53M ÜQ

S_ FMK. 5_ A SCAM. 5_ LOpQ

SL FM F3|LA SCANE 55 ME AN

S_ FM P_ S_ A SC AN_ S_ L RTQ

S_ FM P_ S_ A SC AN_ S_ L RTQ A

5_ FM P_ 5_ A SC AM. S_HDIQ

MF\A P_ 5_ A SCAN_ S_D M 1

a

■ s_FMP_

^^^^S^

fg-FHP-
'■

5_FMP_

...?-.r. '..r-

iS i

S_FMP_

S_HEAD

| iJmmr VA 3 Cm

Figure 111. Partition P_FMASCAN_2A

D-64

GATHE1

GATHEREDJNPUtH
S.FMDIR

S_FMP_

D.CAT
l5_FMP_S_l

5_ m P_ SLAUDIQL S_ R E PQ

S_FMP_

5_FMP_

■'

D_EMC
15_FMP_5_J

S_FMP_5_ AUDIO. 5_FLT

Djr
lS_FMP_S_J

*H

SL FM Pj5_AUDIO_ S_0 RD

5_FMP_

S_FMP_

SilFMPL.S_BIDK
S_FMP_

S_F FMP_

D_EMC
S_FMP_Sj

SL FM P_ SL.AUDIO* S_'R EPCI

SLFMP_S_AÜDIO_S_NCNJ

D_FLOC
15_ FM P_ S_K_FMP_S_AUDIO_ 5_CN JO

GATHEREPLOUTPUT^I

SL FM P_ SLAUDIOj SiC W Jl

Figure 112. Partition P_FMAUD_1

D-65

:S:::FMP S ÖMAU sfeFMP.SlCDÄU

8 FMPJS AUDIO FSICIFFTF

S_FMP_SA,UDIO_F_2_FFTF

GATHERED OUTPUT")

1S^EL

S_FMP_S

3_FMP_S

•5_FMP_S

:S_FMP_S

Figure 113. Partition P_FMAUD_1A

:5^FtrtP_S_PHAU

5_ FM P„S_AUDIO_ S_AOCQ

5_FMP_S_AUDI0_F_*_SEPQ

5_FMP^SL:AUDIQ3JFI0_

|S_FMDIR S_FMP_S

S_FMP_S 5_FHIP_S

5_FMP_S S_FMP_S

S_FMP_S S_FMP_S

S_FMP_S SLFMP_5

,5_FMP_S SLFMP_5

S_FMP :S'SLFWP_S

 _"
S_FMP_S 5_FMP_5

5_FMP_S

Figure 114. Partition P_FMAUD_1B

D-66

s_FMa.siAuDib£äiAecQ

S_ Fltl P_S_AUDIO_ S_ ACNT

S_FMP_S_ AUDIO. S.CAU

S_ FM P_ S_ AUDIO_ S_ FGAU

5_ FM P_S^AUDIOJS_:t)LAy

5_ Fltl P_ S_AUDIOj SJNIQ

%5- FM P_ 53AUDIO_ S-BMCQ

l£_ S_FMP_

5-AtCW _^ :FMP.

S_AU _5_FMP_

5_FMP_

S-AUDF S_FMP_

s_Fmp 5_FMP_

5-FMPJ

S_FMP. SLFMPj

S_FMP_

Figure 115. Partition P_FMAUD_2

5_FMP_S_BEAR_S_BR6S 5_FMP_5_8EA*_5_Ollfi

itFHII>.SLBEAR_SLPADI3F

:::S_FMP_5_BEAIl.S_PAKg

" SJFW R_'s2 B^FL SiJzPAD

Figure 116. Partition P_FMBR

D-67

S_FMP_CNRMN

siS_FMP-SJ30PP_SLI>IINQ

S-FMP_S_DOPP_S_SlTN
: 5_FMP_S_00PP_S_RN|

: i: S_ FM P_ 5L.D0 P P_ SLC PN
S_ FM P_S_DO P PjSiCNI

|gflllP_SLDOPP*S_IIIFNI):
eATHERro_ögfpur_i

■ 5-fMBF S.FMP!

J5-FWP_5 [s_FMP_S

iÜiil 5LFMP_5

i.MP_S

■ S—:'

jS-CW^S

S_FI|IP_5 5.FUP.;

pL>MM s.rwpr.

Figure 117. Partition P_FMDOP_1

fS_FMP_S_CDOP

:: SCFMP_S1DOPP„5_IHTC9

:S8S_FMP_C00PP3i_CPC
5^FMP2S_DOPP_5_RC|
5_FMP_SL.DOPP_5_CC|

ÖüFMPSS_DOPP_S.SLIC

::S-Fli1P*S_D0PP_S_MFCI3

SLFMP_CDÖPP_S_CRW3

0AIHEREB:öUIPUr_1

S.FMPI

.5.FMP.5 S_rWP_S

iS^FMP.S

■.S.FMP_f

!SL.FMP_S

*_FMP_S

put
S_FMP_5

LMP-» [slw

I S-rmPF

Figure 118. Partition P_FMD0P_1A

D-68

s.rotHC S.FBP.S

h*mm ixpwut

S_FMP^S_DOPP_S_iitfCIJ
5_rMP_5_OOPP_S_NRMX

^FMPlÜMPP_S;6:FJ[JK

S_FMP_5_D0PP_S_MNNV

S_™P_5_DOPP_S_IJIFNQ

5-FMP-S S-FMP-S

s-mp.s 5.mp.5

ITi^ £5i5.
KTO.S \%.r«t-S

5_rap_5

i_...!_, ,_..,,.*

JBfgi «a»
LfWf-'jl f»W

PLWKI pgä
[S-WP-S

Figure 119. Partition P_FMD0P_1B

|S_FMP_S_FMIC_S^.EWCS
SjrMP_S_FMIC_S_ET|G

UREPRQ

GATHEREDIÖÜTFÜT.

Figure 120. Partition P_FMDOP_2

D-69

S_FM P_S_FM I C_S^RTRp^

S FMP S FMIC S\NXTRJ

S FMP "'S FMIC S DNX

S FMP S FMIC S RSEt

S_FMP_S_FMIC_S_DTRG

S_FMP_5_FMIC_8_DUM

S_FMP_S_FMIC_S_STR

S FMP S FMIC 3 SD

S FMP S RTD

i m IT

Figure 121. Partition P_FMIN_1

fS FMT^

ASJTMT

; DFMRP PgJ S_FMP_S_FMIC_SJIMEpWg °-**PgJ

GATHEP,ED_OUTPUTJ WWP..S;;FMIC_S_SA

ATHEH

|S_FMP2

S_FMPJ

S_FMP_

•Ji_FMP_

|fc_FMPI

;_ FSC16

GATHEP,ED_OUTPUT_2 |S_RAOU

^pifi

Figure 122. Partition P_FMIN_1D

D-70

S FMP_S2FMiO_EWCS
,FMP_S_FMIC_S_ETRG

S_REPRO

::qATHERED_0UTP:UT.

Figure 123. Partition P_FMIN_2A

Figure 124. Partition P_FMIN_3

D-71

SL FM PJ5_ FMIC_ SE 6 5 FQ

S_ FM P_ S_ FMIC_ S_N P E VM

5_FMP_S_FMIC_5_FIRQ

:-FJ 5_FMP_5_FlTliC_S_EWRT

S.FMDIR

-S-FMP.S

5_FMP_S

5_FMP_S

r;t^ssi
 •

S.FMPlS

5_FMP_S

5_FMP_5

|SL.FMP_5LFMiq_5_EWCT

GATHERED_0UTPUT_1

S_ FM P_ S_ FMlC_ 5_ EWC 5
*-SLFMP_

I5LFC10
-*■ 5_

Figure 125. Partition P_FMIN_3A

D-72

liFMP^5_Fli1IQ_5LQ1

S_FMP_S_FMIC_S_DUMMV

IFMPLSLFMICLSLQMMQ,

5-,CAHD

m^i
LS

ilil^iiNllli
|_FMP_5

^FMP_S

P-5

lFIIIP_S

jIJ^KfcHK

*- 5_FMPJ

Figure 126. Partition P_FMIN_3B

D-73

fiSBMP_S_FME-S

S_FMP_S_FM1C_S_ZQA

m FMP'iSCNSL1

S FMP S PHSP

GATHERED OUTPUT

S_CARD

<5 m

FMP S

_FMP_S

Figure 127. Partition P_FMIN_3C

5_ FM P_ s_ FMici.s_PT BO

5_rei>_S_FMIC_S_TR62

Figure 128. Partition P_FMIN_4

D-74

S_FMP_S_FMIC_S.

GATHEREDJN

||l;F:MPT§iFMIC'S5;EN'ji'

8 FMP S'FpCISfRG2

11-FMR--

S FMP S :|MIC SZEWPG
S_FMP.

Figure 129. Partition P_FMIN_4A

s FMP_S_FMIO;EWC

m FMP£S_FMIC_SvCNT1

SIFMP^SJ-MIC^SIMÜXQ

GAIHEREÖJNPUTlti; S_FMP.S

.S_FMP_S

JLFMP.S

Figure 130. Partition P_FMIN_5

D-75

IGÄTHEREDjNPÜri
S FMPlS FMIC S RÖED

S_FMP3_FMIC_S_CN|2

! S "FMP S FMIC CRTG

Figure 131. Partition P_FMIN_6

!S FMP_S OPWS

IS FMP_S SMPO

S_FRAQ

S FMP S SMPI i

FMP_ |S_FMP S_FMP_

ÜHT fc^T XF

|STMF_ |S_FMP1- filRÄÖtJ

S_FMP_ jffjj^j

 ||_FMP_ |S_-MP_-

KFMFL- S_FMP_

FMP ,8_FMP :

3 FMP

P^ fsTMpT

5_FMP_ S_FMP_

IS_FMP_ S_FMPl

a 4i B_FMP_ 5_FMP_|

= PMPI . S_FMP_

Figure 132. Partition P_FMIN_8

D-76

LEMP}

S_ Fill P_ 5_Ö M 5 Pi S_ FM p_ s_ S P EC_ S_Q 3

0_REGfl
15_FMP_|

5_FMP_S_SPEC_S_MW0C

S_FMP_S_SPEC_S_SUBO

|5_ FM P_S_S P ECL,5L R EQO

S_ FM P_S_5 PECTS_l FFO

UlTRANS]
5„FMP_5_J

'm

S_ FMIP_:S2 5 P ECd 5_ 5Ü EC

P_5_SPEC_S_MWCQ

5_FMP_srSPEfeSL:REQC

^FMPlsispIdLCiFFc;:

[S_™P_S_J S_FMP_S_SPEC_S_TRC

ifeFMP_SLRTD

-WJLFMPj

-*-|5L.FMPj

.FIFFS2

_FMP_S

5_FhlP_5

5_FI)1P_S

S_FMP_S

;5_FMP_5

^p3

iS_FMP_5

F
[S_FMP_5

;S_FMP_S

S_FMP_S

:s_Fmp_s

S_JJ

.RAOUT

S_REPRO

S_SW

^_FMP_SL.SPEQ_ORO

S^FMPl

Figure 133. Partition P_FMSPEC_1

D-77

S FMP S CETSP

ISLFMP_S!3PEC_SSJ1

S_FMP_S_SPEC_S_Gg

S_FM P_S_S P E C_S_M WC Q

SIFMP 8 SPEC S mot

HOME;

S_FMP_S

|s_FMP_S

S_FMP_S

S_FMP_S

8 JJ

S_SONF

Figure 134. Partition P_FMSPEC_1A

s_ FMP_S_ sp Ec_Ci Ro

5LFMP_SiSPECLS;

S_FMP_S_SPEC_S_CDPH L PMD «jj
:::::;T *i j

F*P_S

J

!P_S
i

W^ii

Figure 135. Partition P_FMSPEC_1B

D-78

S_FMPL5LN5SP

5L_ FM p_ 5_ S P EC_ S_ MWNQ

SLFMP_Si_SBEq_SL5UBN

5_FlrtP_S_SPEC_.5_REQN

S_FMP_S_SPEC_S_IFFN

SL FM P_ Su S P ECL 5^T RN

5_FMP_5_EWSP

SL FhfjJL SL S PEC_5_ MWEQ

S_FMP_S_SPEC_S_SUBE

5_ FM P_ S_ 5 P EC_ 5_ R EQ E

5_ FM P_ S_ 5 P EC_ S_l FFE

SL FM RJ5L §, ,p ECL 5_T R E

:

.FMP^

flP_

rMP_

MP_

ftMP_

S-FMP_

b_rmH_

S_JJ

pll-sw

Figure 136. Partition P_FMSPEC_2

D-79

iS FMP"äS SPEC'S TRN äS FMP S SREC:sSsTRE

S FMP_S_SPEG^S3KC .s^m S_SPEC_S_XS

_ _s
 Z—

;_FMP_S

S_FMP_S

■_FMP_S

S_FMP_S

#^fca

Figure 137. Partition P_FMSPEC_2A

;s FMP S SPEC S X1

K3ATHERED (OUTPUT

SiFMP SiSPEC-S CDPH

^ - i w_REP 1
^3_FMP_S_SPEC_S_X2lS_FMP_S_Sy

S»FMP_SiSPEC S CPWR
S_FMPlS_SP'EC;s™rR!G_iLW I ~ ®*?ffi>M

FMP 5
. Z-Z.

FWP.S.

S_FMP_S;

|p-s_

SsFMP_S_SPEC_S_eOHD i

S FMPTSCDOP:;

!||.FMP_S_

[S_FMP_S_

mm

Figure 138. Partition P_FMSPEC_3

D-80

S_FMP_S_SP£C_SJ

|:?':':::?';f:S_™p_;s_SPEi

B5.FMP_5_SPEC-S-COHN

|S_FHIP_S_SPEC_S_SVNS

5_FMP_S_NRtltN

!■■;

S_FMP_5-5PEC_S_>(SS:;

5_FMP_S_5PEC_S_II«_DCOtS-FMPj

""" """"" "" ' '

S_SPEC_S_COHE

5_FMP_S_SPEC_5_TP.IO_5TB

SLFMP.S^SPECQS^SyEW;

S-FMP_

S-FWP.

5L.FI.IP_

3_nnp_

„!_____.'

fs_WAOD

|S_S0NF!

Figure 139. Partition P_FMSPEC_4

:ÖÄTHEREPjRPLrT_:1

S_OUTFL_S_CNT1 *f P"™™-^:

S_:OUTFL!3S_.MRGO

Figure 140. Partition P_OUT_1

D-81

GATHERED INPUT!

: GATHERED JDÜTPÜTII

S_AOUT

S.AOUTC

S_0l)TFL_S_CLCK

i_OUTFL

' .
fS_OUTFL

I
S_RAOUT

I
S_REPRO:

Figure 141. Partition P_OUT_2

S_OUTFl_5_CLCK

S-5.OUIFl_S.CNl

S_0UTFl_S_ZR0

S_OUTT

S_OUTFl_S_DU

5_0UTF1_S_AUIR
S_0UTFL.S_DUI|IMV

0UTF1_S_CTRL

S_OUIFl_S_ASTj

S_0UTFI_5_CNT_A|

5_ASC0|

s_ctsil

>_LWFQ

S.FWFQ
S_ÖUTFt_SlCTRl_W

Figure 142. Partition P_OUT_3

D-82

Management Communications and Control, Inc. (MCCI)
Contract N68335-98-C-0140

Non-proprietary Abstract - SBIR N98-030 Phase I Final Technical Report

The need for application software portability and reusability has been increased by the
COTS revolution. Operating system and math library independence are essential to
portability strategies. However, in order to achieve the high throughput required by
real-time sensor processing systems, the executable must be optimized for the specific
target.

Management Communications and Control, Inc. (MCCI) has developed a
methodology and a toolset which provides translation of target independent
applications to target specific source code incorporating target optimized libraries.
Application portability and reusability is inherent in the methodology. An order of
magnitude reduction in application development time has been demonstrated. Life
cycle costs should be reduced by at least the same factor. The methodology supports
low cost reuse of the AN/UYS-2 code base. This report provides an overview of the
methodology and the toolset. Porting of the DICASS sonobuoy signal processing from
an AN/UYS-2 implementation to an implementation using the MCCI methodology and
toolset is demonstrated.

